10,542 research outputs found

    Survival probability of surface excitations in a 2d lattice: non-Markovian effects and Survival Collapse

    Full text link
    The evolution of a surface excitation in a two dimentional model is analyzed. I) It starts quadratically up to a spreading time t_{S}. II) It follows an exponential behavior governed by a self-consistent Fermi Golden Rule. III) At longer times, the exponential is overrun by an inverse power law describing return processes governed by quantum diffusion. At this last transition time t_{R} a survival collapse becomes possible, bringing the survival probability down by several orders of magnitude. We identify this strongly destructive interference as an antiresonance in the time domain.Comment: 4 pages, 3 figures. Braz. Journ. of Phys., in press. Braz. Journ. of Phys., in press. Braz. Journ. of Phys., in press. Braz. Journ. of Phys., in press. Braz. Journ. of Phys., in press. Braz. Journ. of Phys., in press. Braz. Journ. of Phys., in pres

    Survival Probability of a Local Excitation in a Non-Markovian Environment: Survival Collapse, Zeno and Anti-Zeno effects

    Full text link
    The decay dynamics of a local excitation interacting with a non-Markovian environment, modeled by a semi-infinite tight-binding chain, is exactly evaluated. We identify distinctive regimes for the dynamics. Sequentially: (i) early quadratic decay of the initial-state survival probability, up to a spreading time tSt_{S}, (ii) exponential decay described by a self-consistent Fermi Golden Rule, and (iii) asymptotic behavior governed by quantum diffusion through the return processes and leading to an inverse power law decay. At this last cross-over time tRt_{R} a survival collapse becomes possible. This could reduce the survival probability by several orders of magnitude. The cross-overs times tSt_{S} and tRt_{R} allow to assess the range of applicability of the Fermi Golden Rule and give the conditions for the observation of the Zeno and Anti-Zeno effect

    Effective one-body dynamics in multiple-quantum NMR experiments

    Get PDF
    A suitable NMR experiment in a one-dimensional dipolar coupled spin system allows one to reduce the natural many-body dynamics into effective one-body dynamics. We verify this in a polycrystalline sample of hydroxyapatite (HAp) by monitoring the excitation of NMR many-body superposition states: the multiple-quantum coherences. The observed effective one-dimensionality of HAp relies on the quasi 1d structure of the dipolar coupled network that, as we show here, is dynamically enhanced by the quantum Zeno effect. Decoherence is also probed through a Loschmidt echo experiment, where the time reversal is implemented on the double-quantum Hamiltonian, I_{i,+}I_{j,+} + I_{i,-}I_{j,-}. We contrast the decoherence of adamantane, a standard 3d system, with that of HAp. While the first shows an abrupt Fermi-type decay, HAp presents a smooth exponential law.Comment: 8 pages, 6 figure

    Effect of Emotion and Personality on Deviation from Purely Rational Decision-Making

    Get PDF
    Human decision-making has consistently demonstrated deviation from "pure" rationality. Emotions are a primary driver of human actions and the current study investigates how perceived emotions and personality traits may affect decision-making during the Ultimatum Game (UG). We manipulated emotions by showing images with emotional connotation while participants decided how to split money with a second player. Event-related potentials (ERPs) from scalp electrodes were recorded during the whole decision-making process. We observed significant differences in the activity of central and frontal areas when participants offered money with respect to when they accepted or rejected an offer. We found that participants were more likely to offer a higher amount of money when making their decision in association with negative emotions. Furthermore, participants were more likely to accept offers when making their decision in association with positive emotions. Honest, conscientious, and introverted participants were more likely to accept offers. Our results suggest that factors others than a rational strategy may predict economic decision-making in the UG

    A study of boiling water flow regimes at low pressures

    Get PDF
    "A comprehensive experimental program to examine flow regimes at pressures below 100 psia for boiling of water in tubes was carried out. An electrical probe, which measures the resistance of the fluid between the centerline of the flow and the tube wall, was used to identify the various flow regimes. This probe proved to be an ideal detection device, because of its simplicity, reproducibility, and accurate representation of the flow pattern within the heated test section. The major flow regimes observed were bubbly, slug and annular flow. Under certain conditions at high flow rates, a wispy-annular flow patern was observed. The effects of mass velocity (0.2 x 10 - 2.4 x 100 lbm/hr-ft2), inlet temperature (100, 150, 2000F), exit pressure (30, 100 psia), quality (x = -10 - +7 percent), purity (9, 40 PPM NaCl; 1-3 megohm-cm), length (L/D-30, 6Q, 90), diameter 0.094, 0.242 in.), and orientation (vertical and horizontal on the flow regimes were studied. Flow regime maps on coordinates of mass velocity and quality are presented for these conditions. Bubbly and slug flow occurred primarily in the subcooled region, while fully developed annular flow was reached at equilibrium qualities between 2 and 4 percent. The transitions between the different flows were shifted to regions of increased subcooling when velocity, pressure, and heat flux increased, and when inlet temperature decreased. Purity and geometry had little affect on the flow regime boundaries.(cont.) The shifting of the transitions is related to the agglomeration point, which is that point at which the bubbles so coalesce that slug flow is first observed. The agglomeration point depends on the point of incipient boiling, the number of bubbles in the flow, and the number of collisions per bubble. These latter quantities in turn depend on velocity, temperature, pressure, and heat flux. The flow regime information obtained in this study s~hould be of value in correlating and interpreting low pressure heattransfer data. The flow regime data were found to be useful in explaining the effect of inlet temperature on burnout heat flux.Sponsored by the Solid State Sciences Division, Air Force Office of Scientific Research D.S.R

    Model of critical heat flux in subcooled flow boiling

    Get PDF
    The physical phenomenon occurring before and at the critical heat flux (CHF) for subcooled flow boiling has been investigated. The first phase of this study established the basic nature of the flow structure at CHF. A photographic study of the flow in a glass annular test section was accomplished by using microflash lighting and a Polaroid camera. The results showed that the flow structure at CHF for high heat flux (1 x 106 - 5 x 106 Btu/hr-ft2), high subcooling (50-110 *F), at low pressures (less than 100 psia) was slug or froth flow depending on the mass velocity. Nucleation was shown to exist in the superheated liquid film. Pin-holes in the burned-out test sections suggested that the CHF condition was extremely localized. Flow regime studies in tubular and annular geometries, using an electrical resistance probe, provided further evidence of the slug or froth nature of the flow, and also showed that dryout of the superheated liquid film was not responsible for CHF. Since this evidence was contradictory to previously formulated models of CHF,a new model was proposed: Near the CHF condition, nucleation is present in the superheated liquid film near the surface. As a large vapor clot passes over the surface, these nucleating bubbles break the film and cause a stable dry spot which results in an increased local temperature. As the vapor finally passes the site, the dry spot is quenched by the liquid slug, and the temperature drops. At CHF, the volumetric heat generation, slug frequency, and void fraction are such that the temperature rise resulting from the dry spot is greater than the temperature drop during quenching. An unstable situation results where the temperature of this point continues to rise when each vapor clot passes the site until the Leidenfrost temperature is reached, at which point quenching is prevented and destruction is inevitable.(cont.) A new method of measuring surface wall temperatures, in conjunction with high speed (Fastax) 16 mm movies, confirmed the microscopic features of the proposed model. At CHF, the wall temperature cyclically increased with the same frequency as the slug-vapor bubble passage. Destruction finally resulted as the temperature increased beyond the Leidenfrost point. An analytical investigation based on an idealized model demonstrated that the cyclical nature of the temperature increase at CHF could be predicted with appropriate flow pattern inputs. A parametric study using the program indicated that heater thickness and heater material should affect the CHF. It was shown that the proposed model appears to be consistent with parametric trends, i.e. mass velocity, pressure, subcooling, diameter, length, and surface tension. The model indicated that the CHF for thicker walled tubes, keeping all other conditions the same, would increase. CHF tests were conducted which confirmed that thicker walled tubes (0.078 vs. 0.012 in. ) had CHF up to 58 percent higher than thin walled tubes.Sponsored by the Solid State Sciences Division, Air Force Office of Scientific Research (OAR) Sponsored by Air Forc

    High count rate {\gamma}-ray spectroscopy with LaBr3:Ce scintillation detectors

    Full text link
    The applicability of LaBr3:Ce detectors for high count rate {\gamma}-ray spectroscopy is investigated. A 3"x3" LaBr3:Ce detector is used in a test setup with radioactive sources to study the dependence of energy resolution and photo peak efficiency on the overall count rate in the detector. Digitized traces were recorded using a 500 MHz FADC and analysed with digital signal processing methods. In addition to standard techniques a pile-up correction method is applied to the data in order to further improve the high-rate capabilities and to reduce the losses in efficiency due to signal pile-up. It is shown, that {\gamma}-ray spectroscopy can be performed with high resolution at count rates even above 1 MHz and that the performance can be enhanced in the region between 500 kHz and 10 MHz by using pile-up correction techniques

    Critical boron-doping levels for generation of dislocations in synthetic diamond

    Get PDF
    Defects induced by boron doping in diamond layers were studied by transmission electron microscopy. The existence of a critical boron doping level above which defects are generated is reported. This level is found to be dependent on the CH4 /H2 molar ratios and on growth directions. The critical boron concentration lied in the 6.5–17.0 X 10 20 at/cm3 range in the direction and at 3.2 X 1021 at/cm 3 for the one. Strain related effects induced by the doping are shown not to be responsible. From the location of dislocations and their Burger vectors, a model is proposed, together with their generation mechanism.6 page
    corecore