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ABSTRACT

The physical phenomenon occurring before and at the critical heat
flux (CHF) for subcooled flow boiling has been investigated.

The first phase of this study established the basic nature of the
flow structure at CHF. A photographic study of the flow in a glass annular
test section was accomplished by using microflash lighting and a Polaroid
camera. The results showed that the flow structure at CHF for high heat
flux (1 x 106 - 5 x 106 Btu/hr-ft2), high subcooling (50-110 *F), at low
pressures (less than 100 psia) was slug or froth flow depending on the
mass velocity. Nucleation was shown to exist in the superheated liquid
film. Pin-holes in the burned-out test sections suggested that the CHF
condition was extremely localized. Flow regime studies in tubular and
annular geometries, using an electrical resistance probe, provided further
evidence of the slug or froth nature of the flow, and also showed that
dryout of the superheated liquid film was not responsible for CHF.

Since this evidence was contradictory to previously formulated models
of CHF,a new model was proposed: Near the CHF condition, nucleation is
present in the superheated liquid film near the surface. As a large vapor
clot passes over the surface, these nucleating bubbles break the film and
cause a stable dry spot which results in an increased local temperature.
As the vapor finally passes the site, the dry spot is quenched by the liquid
slug, and the temperature drops. At CHF, the volumetric heat generation,
slug frequency, and void fraction are such that the temperature rise resulting
from the dry spot is greater than the temperature drop during quenching. An
unstable situation results where the temperature of this point continues to
rise when each vapor clot passes the site until the Leidenfrost temperature
is reached, at which point quenching is prevented and destruction is inevitable.

A new method of measuring surface wall temperatures, in conjunction with
high speed (Fastax) 16 mm movies, confirmed the microscopic features of the
proposed model. At CHF, the wall temperature cyclically increased with the
same frequency as the slug-vapor bubble passage. Destruction finally resulted
as the temperature increased beyond the Leidenfrost point.

An analytical investigation based on an idealized model demonstrated that
the cyclical nature of the temperature increase at CHF could be predicted with
appropriate flow pattern inputs. A parametric study using the program indicated
that heater thickness and heater material should affect the CHF.

It was shown that the proposed model appears to be consistent with
parametric trends, i.e. mass velocity, pressure, subcooling, diameter,
length, and surface tension. The model indicated that the CHF for thicker
walled tubes, keeping all other conditions the same, would increase.
CHF tests were conducted which confirmed that thicker walled tubes (0.078 vs.
0.012 in. ) had CHF up to 58 percent higher than thin walled tubes.
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NOMENCLATURE

A = area

c = specific heat at constant pressure

D = diameter

D = equivalent diameter

E = test section voltage

G = mass velocity

H = enthalpy

H = saturation liquid enthalpy

H = heat of vaporization

h = heat-transfer coefficient

I = test-section current

k = thermal conductivity

L = axial heated length

P = pressure

q = rate of heat transfer

q = rate of heat transfer calculated using test section voltage
and current

q = rate of heat transfer calculated using First Law of Thermodynamics

r = coordinate shown in Fig. 55

rb bubble radius

q/A = heat flux

q/V = internal heat generation rate per unit volume

Rin = internal radius of heated section

EWMWN NIINWIN,
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Rout outside radius of heated section

T = temperature

t = wall thickness

t = time

V = velocity

w = mass flow rate

X = equilibrium steam quality at test section exit

= thermal diffusivity

a. = void fraction

AT sub= degrees of subcooling at test section exit

AH sub= subcooling enthalpy at test section exit

p = fluid density

y = dynamic viscosity

DIMENSIONLESS GROUPS

Nu = Nusselt number = hD/k

Pr = Prandtl number = c P/k
p

Re = Reynolds number = GD/p

SUBSCRIPTS

b = bulk fluid condition

cr = critical condition

e = test section exit condition

fc = forced convection conditions

in = test section inlet condition

q = quench conditions

s = saturation conditions

W = tube wall characteristics
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Chapter 1

INTRODUCTION

One of the most important phenomena which limits the thermal

performance of high heat flux systems,such as pressurized water reac-

tors, high powered electronic tubes, and high field magnets, is the

so-called critical heat flux (CHF) condition, which is characterized

by a sharp reduction in ability to transfer heat from the heated sur-

face. This condition is also referred to as burnout, departure from

nucleate boiling, or boiling crisis; however, these terms are generally

understood to have the same meaning for the high heat flux conditions

of interest here. A typical boiling curve for water under subcooled

forced-convection conditions is given in Fig. 1; the boiling curve

for saturated pool boiling is included for comparison. For a system

where heat flux is the independent variable, point A or A' defines the

conditions where a sudden rise in surface temperature is observed with

a further increase in heat flux. The metal would then continue to over-

heat, passing through the partial film boiling regime, the Leidenfrost

point, D or D', and continue into the film boiling regime. For satur-

ated pool boiling with small wires, the new'equilibrium point, C, is gener-

ally below the melting point of the heater; however, for flow subcooled

boiling this point, C', is above the melting point.

Most emphasis has been devoted to CHF data collection and formu-

lation of empirical correlations to predict the data. Although

INN1101101110111NEW IN ifilfil 4
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some idealized models of the physical conditions at CHF have been

proposed, very little experimental work has been undertaken to

examine the actual physical situation. A brief review of corre-

lation and modeling work is given in the following sections.

1.1 Parametric Effects on CHF for Water

The principal parameters which have been found to affect sub-

cooled forced convection CHF in round tube and annular test sections

with uniform heat flux are pressure, mass velocity, degree of sub-

cooling, and geometry (length and diameters). The trends appear to

be independent of the fluid.

*
Early CHF studies by McAdams [1] and Gunther [2] found no

pressure effect. It is difficult, however, to examine this effect

from their limited data. On the basis of more recent data [3, 4, 5]

it is generally agreed that (q/A)cr increases up to a maximum for

pressures between 300 and 800 psia. Figure 2 presents a composite

plot showing this effect.

There also is general agreement that increasing the mass velo-

city increases CHF for subcooled conditions. This effect is clearly

demonstrated by Ornatski's data plotted in Fig. 3 for high pressure

and by data of Loosmore and Skinner [6] at low pressures (Fig. 4).

Increased subcooling increases CHF. For convenience in corre-

lation the relation between subcooling and CHF has generally been

considered to be linear [7, 8]. Examination of actual data, however,

[2, 3, 6, 91 indicates that at low values of subcooling, particularly

at low pressures, there exists a decidedly nonlinear relation, since

*
Bracketed numbers refer to references listed beginning on page 152.

I IN 111911"1WN1W 41111111-F-4 ___ - - -__ - -- __ -
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a minimum heat-flux is generally reached in the subcooled region near

zero quality (Fig. 4). Those studies which have considered very high

subcooling also demonstrate nonlinearity (Fig. 3). The cross-coupling

of mass velocity and subcooling was demonstrated by Longo [10] who

noted the increase of CHF with subcooling to be greater when associated

with lower velocities.

Bergles [5], and subsequently Loosmore and Skinner [6], both

working with pressures below 100 psia, showed that CHF increases as

tube diameter decreases. Bergles, using the Zenkevich prediction [11],

suggested that above 0.3 in. the diameter might have little effect

(Fig. 5 ). Ornatskii and Vinyarskii [12] showed this effect for pressures

between 11 and 61 atm. Doroshchuck and Lantsman [3] similarly found this

effect for tube diameters over most of the high pressure range (735 psia

to 2500 psia) with exit conditions varying from high subcooling (AH sub

200 Btu/lbm) to bulk boiling.

CHF decreases as L/D is increased to a limiting value (L/D = 10 to 40

[ 5,4]) aboverwhich it has a minor influence; thus L/D is considered only

as an entrance effect (Fig. 6 ).

Limited work has been carried out to define the effect of secondary

factors such as surface roughness, gas content, etc. Durant [13] showed

up to 100 percent improvement in CHF for knurled surfaces over smooth

tubes; however, there appears to have been little work done which would

suggest that normal roughness variation has an effect. Doroshchuck and

Lantsman [3] have shown that small amounts-'f dissolved gas in the flow

stream has a negligible effect on CHF. Frost [54], in subcooled annular

flow experiments, showed CHF decreasing with decreased surface tension.

The possible effects of heater material or heater wall thickness on

CHF have received very little attention other than in pool boiling. Lee [14]

lulmillililulmi.
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examined wall thickness effects in flow bulk boiling and found a 6-8

percent increase in (q/A)cr for the thicker walled tube (0.078 vs.

0.034 in.). Hewitt, et al. [17] found a slight improvement in (q/A)cr

for thicker (0.080 vs.0.036 in.) tube walls for high quality (85 per-

cent) and low pressure (>50 psia) flow. Both Vliet and Leppert [15],

for slightly subcooled water flowing normal to a cylinder, and Aladyev,

et al. [16], for subcooled forced convection in tubes at high pressures

(20 - 200 atm), did not observe any variation of CHF with wall thickness.

The preceding parameter trends refer to stable conditions. Stabil-

ity of the flow has a very strong influence on CHF [18]. Daleas and

Bergles [19] showed that moderate upstream volumes (23 and 94 in.3 ) of

subcooled water have sufficient compressibility to promote oscillatory

behavior which produces a large reduction in the subcooled critical heat

flux for a single channel. An analytical study [20] and its extension

to a wide variety of data demonstrated the conditions under which these

system-induced instabilities can be eliminated. General cures for these

instabilities are to throttle the flow near the test section's upstream

end and to avoid any compressible volumes between the throttle valve and

the test section.

1.2 Predicting CHF

Three basic methods for predicting CHF are the empirical method using

statistical and curve-fitting techniques, the superposition method, and the

prediction method using mathematical models based on hypothesized physi-

cal pictures of the events occurring at CHF.
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1.2.1 Empirical Analysis of CHF Data

Correlations for CHF resulting from empirical analyses of parti-

cular data are usually very limited in application, and often cannot

predict another set of data even within the range of applicability.

This is understandable considering the fact that CHF for uniformly

heated round tubes, is a six dimensional (q/A, G, P, AHsub, D, L)

problem with cross-coupling of parameters.

A purely statistical method of correlation for predicting CHF

has been developed by Jacobs and Merrill [21]. They have proposed a

system-describing concept wherein the independent parameters (Tin' P'

G, D) of the system are used in correlating the CHF data. Twenty-

four terms were necessary to correlate the nonlinear and coupling effects

of these parameters. Since the physics of the crisis phenomenon is neg-

lected and because the parametric trends cannot be readily deduced from

the formula, this method is of little general interest.

A more meaningful method of correlating CHF data involves curve-

fitting of data and cross-plotting to obtain the parametric effects.

Gunther [2 ] developed one of the earliest (1950) examples of this type

of correlation:

(q/A)cr = 0.0135 V0. 5 ATsub

This equation has not been successful in predicting other data, probably

due to the fact that Gunther used a very thin walled metal strip as the

heated surface. Mirshak [ 7], using similar techniques of cross-plotting

data, also showed a pressure effect.
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Another example of a correlation using this method of curve-

fitting is that of Macbeth [22]. He used a combination of physical

reasoning, by assuming the local conditions hypothesis (CHF for bulk

boiling is a function of G, D, X, P), and a statistical approach, by

examining more than 5,000 world data points. A reasonably accurate

correlation was achieved for the bulk boiling regim4 but he also states

that the correlation equations are applicable in the subcooled region.

This, however, is questionable since he extrapolates the linear (q/A)

- Xe curve from the quality region into a known nonlinear subcooled

region.

A more fundamental approach to CHF prediction centers around find-

ing certain dimensionless groups which describe the data. Both

Zenkevich [4] and Griffith [23] attempted to use this method to account

for different fluids.

1.2.2. Method of Superposition

Several investigators have suggested that CHF for forced convec-

tion can be predicted by superimposing a convective term on the CHF for

pool boiling. Gambill [24], in a very extensive study, demonstrated

this technique by using a pool boiling correlation, an appropriate con-

vective heat-transfer coefficient and Bernath's [25] wall temperature

correlation. It has been shown that Bernath's correlation is incorrect

[26]; thus the physical basis for the correlation is insecure. Gambill's

correlation predicts a wide variety of data; however, it is still not

especially general since the data for small diameter tubes are not well
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predicted [ 5,6 ]. Levy [27] independently developed a similar

superposition method which, however, used the more accurate method

recommended by Jens and Lottes [28] to get the wall temperature.

Using superposition, it is tacitly assumed that convection and

pool boiling, two highly nonlinear systems, do not interact. Since

this is not physically reasonable, the success of the correlations

must be regarded as fortuitous. One of the reasons they work quite

well is because the heat flux level is generally set by the dominant

convective term.

All the correlations mentioned in this section are sometimes

useful for specific design purposes; however, all the above methods

suffer from the fact that they do not explain the physical situation

contributing to subcooled flow boiling crisis. The desire to go be-

yond merely correlating CHF data and to begin to understand the physics

of the crisis has prompted several investigators to propose models

which supposedly represent the physical situation. Three interesting

and well-known pictures of CHF are discussed in the next section.

1.3 Discussion of Earlier Critical Heat Flux Models

1.3.1 Hydrodynamic Analysis of Chang [29]

It has been shown by Zuber et al. [30] and others that the critical heat

flux in pool boiling is a hydrodynamically-oriented phenomenon which

can be compared to a traffic jam where the bubbles leaving the surface

are so numerous that colder liquid cannot reach the surface. Chang,

in agreement with this pool CHF picture, extends it to forced convec-

tion flow.

WMWNIIWWWA'
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Chang proposes that the bubbles generated on the heated surface

either break away from the surface or collapse on it. At the criti-

cal condition, the bubbles do not collapse but agglomerate on the sur-

face. He considers the bubbles to be moving in the field of a very

viscous, or even non-Newtonian fluid, and at CHF the bubbles achieve

a critical velocity normal to the surface. He finds this velocity

by taking a force balance on a bubble and then claims that the criti-

cal heat flux is the sum of the sensible heat flux transferred by liquid

convection and the latent heat flux transported by the bubbles (See

Fig.7).

Chang does not explain how the various empirical constants are

chosen, and his comparison with the experimental results of other inves-

tigators is extremely limited, especially for water. In addition,

it does not appear that the physical picture is accurate, as will be

commented upon further in Sect. 1.3.4.

1.3.2 Sequential Rate Process of Bankoff [31]

Bankoff presents a model for subcooled critical heat flux, Fig. 8,

postulating a turbulent bubble layer on the wall surface and a single-

phase turbulent liquid core. He assumes a sequential rate process

where the heat is transferred from the wall to the bubble layer, through

the bubble layer and from the outer surface of the bubble layer to the

core. The critical condition occurs when the core is unable to remove

the heat as fast as it can be transmitted by the wall layer, resulting

in a marked increase in bubble size and population, which in turn results

. "W ' - 00.1 SRI- 01 - - - - __- --- M""PWAWW; o4ok _ Oq
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in bubble coalescence and dryout.

Bankoff has related his entire work to the empirical data of

Gunther [2] who examined bubble lifetime, population, maximum bubble

radius, and average fraction of surface covered by the bubbles.

The heat balance expressions which were derived showed good agreement

with Gunther's (q/A)cr data. They were not tested for any other data

because the experimental bubble data were not available. Bankoff's

physical picture, as shown in Sect. 1.3.4 also does not appear to

represent the physical situation at CHF.

1.3.3 Tong's Model of Subcooled CHF [32]

Figure 9 shows a schematic of Tong's [32] postulated model of

subcooled CHF. There is a superheated layer next to the wall above

which exists a bubble layer and turbulent core. It is suggested that

CHF is an overheating of the surface which starts with the formation

of a hot patch underneath a bubble layer. The model is used to deve-

lop a method to relate nonuniform to uniform heat flux data,

rather than predict (q/A)cr'

1.3.4 Critical Review of the Three Proposed Physical Conditions at CHF

In each picture of CHF, the authors assumed that a bubbly-type

flow exists near the heated wall while the flow core is liquid. This

presumably resulted from the belief that at high subcoolings the void

fractions are very low.

In fact, the void fractions at high subcoolings and high heat

fluxes are actually very large. Jordan and Leppert [33] reported voids
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of 50 percent; Styrikovich [34, 35],at pressures below 126 psia, near

30 to 40 percent; and Sato [36] noted voids of 40 to 50 percent at low

subcoolings. The flow patterns which have been observed for subcooled

boiling [37, 36, 38, 39] have have been variously described as slug,

froth, wispy annular,and clotting vapor. The evident conclusion is

that the postulated clear bubble boundary layer near CHF does not

exist.

The implication of the models that there is a dryout of the super-

heated film under a vapor bubble blanket has not been substantiated.

Kirby [38] using a resistance-type measuring device showed that at the

CHF, the superheated liquid film thickness was not appreciably reduced.

Styrikovich using both a scanning beta ray [40] and a salt water deposi-

tion [35] technique, showed that at CHF the water mass reaching the

wall was greater than the mass evaporating from the wall.

1.4 Motivation for this Study

Until recently the major work conducted in CHF studies has been

predominantly concerned with data collection and correlation. Although

the principal parametric effects on CHF are well known and can usually

be predicted with a reasonable degree of accuracy, the actual physical

situation at the critical condition is still unknown. The few models

which have been proposed do not accurately nor adequately describe the

conditions at CHF, nor do they explain all the parametric effects.

Most work concerning the microscopic nature of boiling has been

limited to the experimentally more- tractable region of nucleate pool
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boiling. For example, Cooper and Lloyd [41] examined the conditions

under a nucleating bubble and confirmed the existence of a microlayer

under it. Dougall [42], using the Marcus [43] thermocouple setup,

measured eddy temperatures resulting from nucleating bubbles for sub-

cooled pool conditions. Bobst [44] and Semeria [45] examined, up to

CHF, the temperature profiles adjacent to the heated surface. With

the exceptions of Gunther [2] who did a photographic study, and more

recently Kirby [46], using photography and a resistance probe, very

little detailed work has been accomplished in examining the processes

occurring at CHF in subcooled forced-convection boiling. With high

heat fluxes (1 x 106 - 4 x 106 Btu/hr-ft 2) and large subcoolings (50-140 *F)

especially at low pressures (less than 100 psia), no work beyond data

collection can be found. Thus the main purpose of this study is to

determine the actual physical phenomenon occurring at CHF.
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Chapter 2.

PRELIMINARY STUDY OF THE FLOW STRUCTURE AT CHF

Since there appeared to be confusion regarding the physical

picture at the CHF condition, the first phase of the research effort

was designed to establish the basic nature of the flow structure at

CHF. With the results of this phase, discussed in this chapter, a

model of CHF was postulated, Chapter 3. During the second experi-

mental phase (Chapter 4), the microscopic details of the water and

heated surface conditions were examined in order to provide the neces-

sary proof to substantiate the proposed model.

2.1 General Experimental Program

The experiments were conducted with the low pressure water test

loop located in the M.I.T. Heat Transfer Laboratory, and described in

Appendix A. Degassed and deionized distilled water in vertical upflow

was used to cool the direct-current heated metal test sections. Both

annular and tubular test sections were considered. The annular section

consisted of either a glass or insulated metal outer tube together

with a heated stainless steel inner tube. The tubular section was also

fabricated from stainless steel tubing, and was fitted with power bush-

ings and appropriate instrumentation. In Appendix A, Section A.2,a

detailed description of both types of test sections is given.

The following table lists the experimental conditions examined

during the program:

"1111o" 11101111 1 1 . 1. 1 a I WON
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Table 2-1

Range of Variables

D = 0.094 - 0.25 in.e

t = 0.012 - 0.078 in.

L = 1.4 - 10.0 in.

P = 25 - 90 psia

G = 0.5 x 106 - 7.5 x 106 lbm/hr-ft2

AHsub 50-100 Btu/lbm

(q/A)cr 1.0 x 106 - 5.5 x 106 Btu/hr-ft 2

2.2 Flow Visualization at CHF

Using the glass annular test section, a photographic flow regime

study was conducted. Test runs were made by setting the flow rate,

inlet temperatureand exit pressure. The power was then increased in

steps until CHF. Polaroid photos were taken of the boiling phenomenon

at the exit end of the test section after each increase in power.

Details of the photographic techniques are described in Section A.4 of

Appendix A. The photographic evidence was of excellent quality, and

permitted an evaluation of the physical picture at CHF. The data and

comments for this series of annular flow regime tests are presented

in Appendix E, Table E-1. The salient features of these visual obser-

vations are indicated in representative photographs given in Fig. 10.

Photo I (Fig. 10) shows two large irregular vapor bubbles near the
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exit of the heated section. This is an indication of the high void

fraction typically observed at highly subcooled conditions. It

can be observed that nucleation is occurring in the superheated

liquid layer under the bubbles. As the heat flux is increased, the

nucleation persists and the void fraction increases significantly

(Photo II). Photo III was taken at the start of the CHF condition.

The bright spot indicates that the surface is glowing red, signify-

ing that the local surface temperature has already gone beyond the

Leidenfrost point. This hot patch was subsequently seen to spread

quickly (1 - 2 sec) over the entire circumference as the test sec-

tion was melted and the electric current was broken. The liquid

drops on the outside of the glass tube resulted from a small water

leak in an exit plenum fitting. The CHF condition was also captur-

ed at a higher mass velocity as shown in Photo IV.

At higher mass velocity (Photo V) the phase distribution can

no longer clearly be characterized as slug. The flow is more highly

agitated and the bubbles are somewhat smaller; however, nucleation can

also be seen beneath the bubbles. The CHF condition occurred when

the heat flux was increased by two percent.

For one CHF test an Ampex Video Tape system, described in

Section A.4 of Appendix A, was used to record an entire experiment

from the initial power rise to complete destruction. The complete video

tape is on file in the M.I.T. Heat Transfer Laboratory. Photos VI and

VII (Fig. 11), are taken of a television monitor displaying the video

tape. In VI the circular bright spot, indicating localized film boil-

ing, is evident. Photo VII shows the same hot patch slightly larger
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after a short time span (0.1 sec.), the flow pattern again is basi-

cally of a vapor clot or slug nature. Because of the low camera

speed (20fps), analytical examination of flow velocities and void

fractions is impossible. However, the video tape does show the flow

regime, nucleation on the heated surface, and the localized growth

of the hot spot. This experiment appears to be the first time that

video has been tried, and it appears to be a useful technique for flow

visualization.

From this preliminary evidence, it appeared that the CHF

condition for subcooled flow boiling is of a very localized nature.

The flow configuration can be described as having large vapor clots

between approximately equal sized liquid slugs. Nucleation exists on

the wall under both the vapor clots and the liquid slugs. This vapor

clot-liquid slug pattern exists.just before and continues during the

physical destruction of the heated section. The vapor film over the

CHF point apparently does not perceptibly alter the gross flow pattern

as was observed in the video tape. In order to verify that the flow

pattern is slug-like for all CHFs, and to examine the superheated liquid

layer under the vapor clots, further tests were made with an electrical

resistance flow probe.

2.3 Flow Regime Studies

The flow regime probe, developed by Fiori and Bergles [37] for

low pressure diabatic flow regime studies, measures the resistance be-

tween the exposed metal tip and the heated surface (Fig.50). If water
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bridges the gap, the resistance is relatively low and a high vol-

tage reading is observed on an oscilloscope. The observed voltage

will be essentially zero when pure vapor bridges the gap. Thus,

by observing the voltage level and voltage fluctuations, the flow

configuration at the exit end of the heated section can be deter-

mined. Section A.2 (Appendix A) describes the probe circuitry and

the test sections used with the probe.

2.3.1 Probe Signal Interpretation

A thorough discussion of probe interpretation for all flow re-

gimes which exist at low pressure subcooled conditions can be found

in [37]. Only three flow regimes, bubbly , slug, and froth were

found to exist prior to and at the subcooled CHFs recorded in this

study. Bubbly flow is characterized by small bubbles dispersed in

the subcooled liquid. Slug flow consists of large, irregular bubbles,

whose size is on the order of the diameter of the tube or gap of the

annulus with somewhat continuous slugs of water between them. The

bubble, unlike the adiabatic, bullet-shaped, Taylor type, is a vapor

clot without a definite head or tail, and the slugs have small bubbles

dispersed throughout. As the velocity of flow is increased (somewhere

between 2 x 106 - 3 x 106 lbm/hr-ft 2), the.flow pattern changes to what has

been called froth flow [37,47]. The flow now consists of many chunks

of vapor more or less evenly distributed in the liquid. Although

bubbles are also present, it cannot be referred to as bubbly flow

because of the large size of the irregular vapor bubbles. Fig. 12

gives a schematic illustration of slug and froth flow as has been
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observed visually in the present (glass annulus) and previous

(tube with exit sight section [37]) studies. Bubbly flow is not

shown since it does not occur at CHF.

A probe located in the center of the tube at the exit of the

heated section, gave the signals shown in the oscilloscope photo-

graphs in Figs. 13 and 14.

Photo I (Fig. 13) shows the probe trace for forced convection of

water with zero power to the test section. Incipient boiling cannot

be detected with this probe, but bubbly flow gave the character-

istic trace shown in Photo II. The base or zero volt line in the

photos would be the signal for complete vapor (infinite resistance).

For this series of tests, even in the clearly defined slug flow,

the probe signal never approached the base line. This indicates

that a secondary current path existed between the probe and tube

wall, probably through a tear in the teflon tubing insulation.

However, this did not cause any interpretation problems. Photo III

shows the bubbly to slug transition. Small blips, larger than the

bubbly flow variations, indicate a small void, not wide enough to

completely cross the probe wall distance. Fully developed slug flow

is shown in Photos IV, V, VI (Fig. 14) on different time scales.

Above a mas's flow rate of 2.0 x 106 lbm/hr-ft2 there exists a con-

fused vapor-clotted flow called froth. For one particular run, Photo

VII shows the bubbly trace while Photo VIII shows the froth trace.

Photo IX, just before CHF, indicates that some vapor agglomerates
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sufficiently to cause the vapor to bridge the gap. The frequency of

these large deflections in froth flow were extremely low, as is evi-

denced in Photo IX.

2.3.2 Tube Flow Regime Results

The tubular flow regime tests were conducted to show that similar

flow structures exist in straight tube flow as that previously obser-

ved in annular flow. The effects of velocity, exit pressure, quality,

length,and diameter on the flow regimes were examined. The values of

the variables were so chosen so that they could be compared to the

results of the previous flow regime work [37]. Figs. 15-18 show the

flow regime data in terms of mass velocity and quality, and Table E-2

lists the sets of runs completed during this section of the experimen-

tal program.

It is seen in all these figures, called flow regime maps, that

bubbly and slug or froth flow occurred in the highly subcooled region.

The transition from bubbly to froth was not as clear as the bubbly to

slug transition. For the 0.242 in. tube, slug flow appeared to exist up

to G = 2.5 x 10 6. The transition lines on the maps are drawn contin-

uously from the low G, bubble to slug (BTS) transition to the high

G, bubbly to froth (BTF) transitions. The several CHF points ob-

tained are also plotted on these curves, and it is observed that the

flow pattern was slug or froth in each case.

In the four maps, the transition, BTS or BTF, occurs at greater

subcooling or lower quality as the velocity of the flow is increased.

Using previous data [37] in Fig. 16, it is seen that the BTS transi-

tion occurs at higher qualities as the inlet temperature is increased.

-4
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Composite plots of these transition lines, Figs. 19 - 21, clearly

show the effects of pressure, length, and diameter. Increasing the

pressure from 40 psia to 90 psia shifted the flow regime boundary

to lower qualities as seen in Fig. 19. Figure 20 shows that the

smaller L/D caused the transition to occur at greater subcooling.

The diameter effect in Fig. 21 indicates that for smaller diameters

the transition is at lower subcoolings.

The parametric effects of the present study are consistent with

[37] and are also consistent with the effects on CHF as described

in Chapter V. This study also conclusively shows that the flow re-

gime near or at CHF for high heat flux,high subcooling conditions is

slug or froth flow.

2.3.3 Annular Test Section Flow Regime Results

An annular test section was designed and built which allowed

the mounting of an electrical resistance probe on the outer metal tube.

A micrometer-mechanical drive system allowed movement of the probe up

to the heated wall, hence allowing the examination of the flow regimes

in the bulk flow and also in the superheated liquid film next to the

heater. A complete description of this test section is in Section

A.2. A traversing electric probe of this type has been extensively

used to determine the characteristics of the liquid film in two-

phase annular flow of high pressure water [48].
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By moving the probe across the annular gap, for the test condi-

tions listed in Table E-l, it was found that slug flow exists up to

0.002 to 0.003 in. from the wall at or close to the CHF condition.

From the observed bubbly signal as the probe was moved closer to the

wall, it was concluded that nucleation exists in the superheated

liquid film next to the wall. Representative photos (Fig. 22) of the

oscilloscope trace show that slug flow exists at 0.011 in. (Photo I)

and at 0.0015 in. (Photo II) from the surface. A very confused bubbly

flow signal at 0.001 in. is shown in Photo III.

Besides the obvious advantage of being able to examine the film

flow structure with this moveable probe, it was found that a mean

film thickness could also be measured. By adjusting the distance of

the probe from the wall, a point could be estimated which was the bound-

ary between the liquid film bubbly region and the bulk flow slug

region, i.e. the superheated film thickness. Although no attempt was

made to define exactly the film thickness, the distance from the wall

recorded for the bubbly flow regime could probably be regarded as a

minimum film thickness. A few of these points are plotted on a crit-

ical film thickness versus heat flux curve (Fig. 23) which was recent-

ly presented by Kirby [38]. He used an electrical conductance method

of measuring the film thickness directly downstream of his heated sec-

tion for subcooled flow boiling in an annular test section. An extra-

polation of his curve to the present data probably is not valid.
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However, since the present film thickness values are certainly of

the same order of magnitude, it appears that the electrical resis-

tance probe, positioned directly above the heated section, can be

used for film thickness measurements.

It is obvious from the different studies described in this

chapter that the actual flow structure or hydrodynamic conditions

are very different from those postulated by Chang, Tongand Bankoff.

This probably is the reason that their models are very limited and

cannot predict all the parametric effects which were mentioned in

Chapter 1. Thus it is necessary to formulate a new model of the

CHF condition in light of the experimental evidence so far presented.
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Chapter 3

CRITICAL HEAT FLUX MODEL FOR SUBCOOLED FLOW BOILING

With the preliminary results of the present work discussed in

the previous chapter, a new model of the physical processes occurring

before and at CHF is postulated.

Referring to Fig.1, as the heat flux is raised to the CHF condi-

tion, the following situation exists: The void fraction is very high,

perhaps greater than 20 percent on a time-averaged basis; however, on

a local instantaneous basis, a can easily be greater than 50 percent

as shown in Fig. 10, Photo II. The flow pattern is either slug or

froth flow as described previously.

Next to the heated surface is a superheated liquid layer in

which violent nucleation exists due to the high heat flux level.

Regardless of whether the bulk flow conditions are predominately

vapor or water, nucleation continues. This observation is also con-

sistent with the observations of Hsu et al. [49], using water, and

Berenson [50], with Freon 113, both reporting that nucleation exists

in slug and low quality annular flow.

When a liquid slug passes by, the bubble trajectory is similar

to that usually observed in subcooled flow boiling. The bubbles leave

the surface and condense as they flow downstream. However, when a

vapor clot passes over the surface, it is reasonable to assume that

the nucleating bubbles disrupt the liquid film and cause a dry spot.
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This film breakdown could not be directly observed in the present

tests, due to the very turbulent flow boiling covering the surface.

However, Hewitt and Lacey [51, 52] have observed that nucleate boil-

ing can produce breakup of liquid films in annular two-phase flow,

which represents essentially the same flow regime on a local basis.

The forces acting at the liquid-vapor interface are probably

such that the small dry spot remains stable, and probably grows, as

the vapor clot passes over. The heater temperature meanwhile in-

creases, with the rate of increase primarily depending on the rate

of heat generation per unit volume, the size of the dry spot, and

the heat capacity of the metal. After the vapor has moved past the

small dry spot, the dry spot can no longer remain stable, but must

be quenched by the liquid slug. Below CHF this sequence of events

is continuously repeated, causing a cyclical overheating and quench-

ing of the surface as shown schematically in Fig. 24.

CHF and destruction will result when the temperature rise,

AT rise , due to the dry spot,is greater than the temperature drop,

ATquench, resulting from the quench. The net surface temperature

change is then positive after passage of each vapor bubble and

liquid slug combination. When the surface temperature reaches the

Leidenfrost temperature [53], stable film boiling exists, whereupon

the surface temperature increases to adjust itself to point C' on the

boiling curve (Fig. 1). Since the equilibrium temperature is beyond
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the melting point, physical destruction of the heater occurs.

Figure 25 illustrates this proposed CHF mechanism.

This picture of an extremely localized overheating at CHF

explains why Kirby [46] noted a substantial average film thickness

at CHF, and also why Styrikovich [35] saw water predominately

covering the surface during the critical condition.

The fact that nucleation and slug flow can exist [37] and CHF

not result for some conditions of subcooled flow boiling can be

explained by referring to heat flux level. When slug flow is ob-

served with low heat fluxes, (long L/D, low G, high T. ),the inten-
in

sity of nucleate boiling is insufficient to break through the liquid

film. Even if a dry spot is produced, the AT . would be small
rise

due to the low rate of volumetric heat generation.

In order to verify the model, it was necessary to use experi-

mental methods to examine the CHF phenomenon in greater detail. The

following chapter will discuss the details and results of this phase

of the experimental program.
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Chapter 4 .

RESULTS OF THE DETAILED EXAMINATION OF THE CHF MECHANISM

A new method of measuring the surface wall temperatures has

been used, in conjunction with high-speed Fastax movies and Conta-

flex 35 mm photography, to test the assumption of a cyclically

varying surface temperature. A computer program was also developed

to test the validity of the proposed physical picture. The re-

sults of these tests and of the analytical approach are discussed

in this chapter.

4.1 Microflash Photography with Simultaneous Temperature Recordings

The glass annular test section was used for this study to allow

visual observation of the heated section,and also to simplify the

construction of the wall thermocouple. A copper-constantan 0.010 in.

thermocouple was drawn through a hole in the 0.035 in. heated wall

so that the bead would be flush with the water side of the heated sec-

tion. The thermocouple was located at the most probable axial location

of CHF, approximately 1/4 in. from the exit of the heated section as

shown in Fig. 47. The thermocouple signal then was continuously record-

ed on an oscillograph recorder. While the temperature traces were

being recorded, microflash photos or Fastax movies (1200 frames per

sec), were taken of the flow. A detailed description of the thermo-

couple installation and the test techniques used.is presented in

Sections A.2 and A.3 of Appendix A.

Figures 26 and 27 show three microflash (Contaflex) photos with

the simultaneous temperature traces. A signal is seen in each trace

M M1 = 11Ill11lllil M ilk liillilill ll1161.
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which corresponds to the microflash discharge and hence the photograph.

The horizontal lines on the trace are 0.1 seconds apart. The abso-

lute wall temperatures are estimated from McAdams' [1] correlation as

discussed in detail in Appendix C. The heat fluxes in all cases were

within 85 percent of CHF. Since the primary purpose was to relate

the temperature trace to the configuration, CHF was avoided for most

of this series of tests.

Photo I shows a bubble about to pass the wall thermocouple. The wall

temperature is at a minimum since water is covering the surface.

During the next 0.03 sec, the temperature rise results from the approx-

imately 1-1/2 in. long vapor bubble passing the thermocouple at

roughly 50 in./sec. Since void fraction data could not be taken, it

was difficult to get the exact flow velocity at the exit. Photo II

shows the surface again covered by liquid and the wall temperature,

during the microflash discharge was also a minimum,confirming the

presence of water on the surface. The small bubbles seen upstream of the

exit caused the slight temperature variations following the dis-

charge signal. Approximately 0.06 sec later the temperature rise

seen on the trace resulted from the larger bubble at the bottom of the

photo. Photo III (Fig. 27) shows the vapor void directly above the

thermocouple. The corresponding trace shows the surface temperature

to be a maximum. The water slugwhich quickly follows, quenches the

surface. From these photos and traces, then, the relationship between

slug flow and the temperature variation has been established.
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Photos IV and V, without temperature traces, again clearly show

the high-void, slug nature of the flow with nucleation in the super-

heated film. These photos were taken at 87 and 90 percent of the

CHF condition recorded in Fig. 28. However, the flow conditions were

such that the temperature rise, associated with a vapor clot passing

the thermocouple, finally exceeded the temperature drop due to the

quenching slug. The cyclically increasing temperature is observed in

Fig. 28 until film boiling and destruction result. Figure 29 shows

the observed fluctuations of this CHF trace on an expanded scale. The

computed curve resulted from the analytical study of CHF discussed in

Section 4.4.

4.2 Fastax Movie Results

A Wollensak 16mm Fastax camera was used to photograph the flow

during CHF runs. Preliminary black and white movies without the thermo-

couple instrumentation showed that slug flow exists at high subcoolings

and is extremely violent and unstable to the point of actually causing

momentary (0.001 sec) flow stoppage. With this film, however, there

was not enough contrast to clearly distinguish details of the flow

structure. Color film was then tried since other investigators study-

ing flow boiling [55] have had more success with it. In all the Fastax

work with the simultaneous wall thermocouple instrumentation, Ektachrome

film was used.

One thousand feet of colored movies, 40 sec real time, were taken.
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Seven hundred feet were of suitable quality for interpretation, and

A twenty-minute movie was made of the useable footage. A listing of

the titles used for this film and a short commentary which explains

the purposes and results of each test are reproduced in Appendix D.

Table E-3 lists all the tests, including the movie runs, completed

during this phase of the study.

Because the camera was in operation for only 4 sec, the record-

ing of an actual CHF condition was only partially successful.

Starting the camera at the onset of the critical condition, i.e. at

the time that the cyclical rise of wall temperature began, was the

basic experimental difficulty encountered. Attempts at forcing CHF

while starting the camera did not work. The attempt to start the

camera when the recorder first showed the CHF temperature variation

had limited success. By the time the camera was started, the CHF

condition had progressed to film boiling as evidenced in Test T-15.

The films of tests T-14 and T-15, being representative, will be dis-

cussed in detail to show the method of analysis used and the. results

obtained.

Previous films showed slug flow with large void fractions and

flow instabilities in the nature of momentary flow reversals and

stoppage. In order to see whether this flow stoppage was inherent

in the flow or whether it resulted from the 90 degree change of

flow direction, the straight-through-flow, exit plenum chamber was

built (See Appendix A, Section A.2). Test T-14 was run to 98 percent
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of the critical heat flux with the new exit chamber. The movie was

taken and another film was placed in the camera, continuing the same

run to burnout (Test T-15). From these films, it was determined that

the flow stoppage also occurred with the new exit plenum; consequently

the observed flow stoppage was an internal flow, rather than system,

instability.

A time-motion study of the film, using a Kodak Time-Motion

Analysis Projector, although tedious, was very straightforward. A

60 cycle (120 flashes per sec) timing light inside the camera, produc-

ed a mark every 0.00833 sec on one edge of the 16mm film. Using the

number of frames counted between marks and the number of marks, the

two curves in Fig. 30 were drawn. The reference or zero frame was the

central frame of the first time mark.

Fig. 31 is the actual wall temperature trace for run T-14. The

camera was running for approximately 1.9 seconds before the timing

light was turned on. The fact that the camera increased in speed

from 1350 to 1500 frames per second (Fig. 30) did not cause any diffi-

culties in film analysis. A random sample of vapor clots from the

film were recorded and compared to the temperature trace. Likewise,

several points on the trace were checked to see whether they coin-

cided with the particular frames of the film found by using Fig. 30.

In both cases, movie to trace or trace to movie, a temperature rise

coincided with a vapor clot and a temperature drop with a slug quench-

ing the surface. Fig. 32 shows the temperature trace for Test T-15.

0 1=11 111NMIUINI.
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The rapidly fluctuating temperature trace shows the cyclically

increasing temperature at the CHF condition. It is interesting to

note that the power was increased 21.5 seconds previous to CHF.

Thus a reasonable steady state was achieved and the heat flux was

probably at point A' on the boiling curve (Fig. 1). The CHF condi-

tion was triggered by either a slight power perturbation, or more

probably, a random flow perturbation in the form of a large vapor

clot. The movie camera was turned on 0.6 seconds after the CHF

condition started. Thus, the resulting exceptionally fine quality

film, and the only one showing the actual destruction of the test

section, showed only the already oxidized and darkened area under

the vapor film. As the film boiling expanded circumferentially,

and less so axially, the charred color turned to a pale red, cherry

red, and finally yellow before melting. The slug flow continued in

the test section and did not appear to be greatly affected by the

local film boiling.

A rough measure of the average void fraction was determined in

the following manner. The velocity of the flow at the exit was calcu-

lated by measuring the distance a particular vapor patch moved over

several frames of film. An arithmetic average velocity was then calcu-

lated using the several velocities calculated at various times in

the film. Then, knowing the inlet velocity, and assuming no slip, the

average void fraction at the exit was calculated. Two assumptions

implicit in this method are that the rate of condensation at the vapor-
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liquid interface is negligible and that the flow velocity does

not change radically during the camera run time (3.5 to 4.0 seconds).

For Test T-14 the void fraction was calculated to be 25 percent.

Such a large void fraction is consistant with the data of Styrikovich

[40] and Jordan [33], and with others mentioned previously.

4.3 Pin-Holes in Destroyed Test Sections

Small pin-holes are noticed in some of the destroyed test sec-

tions of the annular flow tests (Fig.33). The observation of these

holes was possible because of the particular geometry and experimental

setup that was used. The inside of the tube was open to the atmos-

phere through the inlet copper shorting tube, as described in A.2.

Thus when the localized temperature of the heated wall exceeded its

melting point, the higher pressure on the flow side forced water

through the pin-hole, which in turn cooled the pin-hole circumference.

If the shutdown of power was slow, more holes developed as film boiling

spread, and complete fracture resulted. Conduction losses through the

exit shorting bar normally caused the burnout point to be approximately

1/4 in. from the end rather than at the end.

With the wall temperature trace being continuously monitored, the

onset of CRF was immediately noticed and frequently allowed suffi-

ciently rapid shutdown of the power. Thus, referring to Fig. 33,

it is seen that the test sections sometimes did not completely fracture

near the exit but merely blew out the molten metal, producing the pin--

holes. This evidence further substantiates the existence of an
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extremely localized dry patch at CHF.

4.4 Analytical Results

A set of differential.equations were written to describe the

proposed physical situation at CHF. It was felt that a good correlation

between the solution to these equations and the experimental results

would indicate that the proposed model correctly described the actual

physical phenomenon at CHF.

Since the bubble size on the heater wall is much smaller than the

test section radius(See Fig.54), it was assumed that the wall could be

treated as a flat plate. The differential conduction equations for a

flat plate with internal heat generation and time-varying boundary

conditions were approximated in the computer program by using finite

difference equations. The time-varying wall temperatures are actually

calculated by a method best described as a marching time solution. Given

an initial wall temperature distribution, time is incremented and

a new distribution is found. This new distribution is then used for

the succeeding time increment. By selecting the proper boundary condi-

tions at a particular time, the unsteady nature of the problem is

solved. A detailed discussion of the computer program is presented in

Appendix C.

Before comparing the computed and experimental temperature varia-

tions, it appears appropriate to briefly discuss the physical signi-

ficance of the thermocouple measurements. Because of its large size

(0.010 - 0.013 in.), the wall thermocouple cannot be expected to accurately

respond to the temperature change underneath a nucleating bubble only
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0.001 to 0.002 in. in diameter. The measured temperature at CHF

(Figs. 28 and 32)is a result of the overheating and quenching of

the metal surrounding the thermocouple; hence, the temperature

represents an average value of the temperature variation around

the thermocouple.

The computer program calculates the temperature variation assum-

ing a fixed dry spot area and no thermocouple hole in the metal. In

other words, an infinitely small thermocouple on the surface would

measure the calculated variations. Nonetheless, this idealized solu-

tion of the average temperature variation proved extremely useful.

The necessary inputs to the computer program, obtained from the

data and from the observed flow structure of the experiments, are;

(q/A), AH sub T in P e, appropriate test section geometry, frequency

of the slug-clot passage, and the percent of the slug-clot conbination

which is vapor. The latter two values set the time variation of the

boundary conditions which simulate the overheating-quenching cycle.

An assumed dry spot size is another input parameter. In Figs.29 and

34 two particular temperature variations generated by the computer

program (See Table E-4 for the computer input values) are compared

with the c.orresponding temperature variations recorded by the oscil-

lograph. The remarkable agreement between the calculated and measured

temperatures is viewed as further evidence that the proposed physical

picture correctly describes the actual phenomenon occurring at CHF.

Although the program probably cannot, for the present at least,
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be used as a prediction tool as discussed in 5.2, it can be used

in predicting the general trends resulting from varying wall thick-

ness, heater metals, and dry spot area. For instance, it was veri-

fied that increasing the dry spot area or decreasing the tube wall

thickness, all other conditions remaining the same, will cause greater

surface temperature rises. With a higher thermal conductivity

material, molybdenum, the calculated temperature rises were shown

to be much smaller than for stainless steel, for the same flow condi-

tions and heat flux. Table E-4 lists the inputs and the resulting

temperature rises for representative runs showing these effects.

4.5 Summary of the Detailed Experimental and Analytical Studies

The postulated cyclical temperature rise and drop, with the rise

being greater than the drop, has been observed during the CHF pheno-

menon. The pin-holes observed in some burned-out test sections veri-

fies that the overheating is extremely localized. The computer ana-

lysis further supports the proposed model, since the surface temper-

ature variations can be calculated using appropriate input data.

The proposed model can be further tested by examining its ability

to predict the effects of the various parameters on CHF. Chapter 5

will examine this aspect of the model.
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Chapter 5

PROPOSED MODEL AND PARAMETRIC EFFECTS ON CHF IN TUBES

In this chapter it will be shown how the proposed model appears

to be consistent with all the parametric effects. The model as a

prediction tool will be discussed in the final section.

5.1 Parametric Trends and the Model

For discussion purposes the mathematics involved in describing

the proposed physical situation can be simplified. It will be assumed

that when the surface is covered by the passing vapor clot, the

temperature rise of the surface under the dry spot will be governed

only by heat generation in the tube wall. It will be assumed that the

section under the dry spot is completely insulated, thus neglecting the

heat transfer to the vapor on the cooled side. This also neglects the

conduction losses which occur with the local overheating. For these

conditions, i.e., total surface insulation and heat generation in the

tube wall, a simple relationship between time and temperature change

can be derived. Thus, whenever the surface is covered by a vapor clot,

the formula

AT rise = (q/V) At/p crise p

applies. This equation, because of the simplified assumptions, over-

estimates the temperature rise for a given time interval. Thus, a

longer At would be necessary for a given AT rise in the actual physical

situation. For discussion purposes, however, this equation is satisfactory.
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The temperature drop, AT quench' which is due to the liquid

slug, partially depends on the temperature of the water and the

duration of the slug over the nucleating point. Other factors

such as nucleate boiling bubble size, dry patch stability,and flow

regimes also effect the temperature variations. With this dis-

cussion in mind, the parametric effects noted in Chapter 1 will

now be examined.

5.1.1 Mass Velocity

In Section 1.1 it was found that (q/A) cr increases with mass

velocity as P, AHsub, L, and D remain constant. Several factors

appear to be important to the explanation of this effect by means

of the proposed model.

The first factor relates to the establishment of the slug

or froth flow regime. Figs. 15-18 show that the flow regime

transitions and slug or froth flow occur at higher subcoolings

as G increases. Replotting the BTS or BTF lines of Fig. 15 on

q/A versus AHsub coordinates (Fig. 35) shows that the transitions

also occur at higher heat -fluxes for increased mass velocities.

Thus q/A must increase sufficiently for the necessary flow conditions

of the model to exist.

The increased flow velocity also decreases the time span during

which the vapor clot covers the stable dry spot. This in turn limits

the temperature rise before the surface is rewetted by the slug. At

the same time, the turbulence level increases. This increased
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turbulence allows colder liquid to quench the surface even though

the mixed-mean enthalpy of the bulk flow might be the same as

that for a lower G. For an increased G, then, a higher q/A,

hence q/V, is necessary before the surface temperature rise,

ATrise, is greater than the temperature drop, ATquench'

An analytical attack on the dry spot stability, as explained

in Section 5.3, is extremely difficult. It is probable, however,

that the increased film velocity under the vapor void will prevent

a stable dry spot. Only a higher q/A would be able to counter-

act this increased film velocity effect.

5.1.2 Subcooling

In Figs. 3 and 4 it was noted that (q/A)cr increases with

A sub, holding P, G, L, and D constant. The flow regimes which

result, Figs. 15-18 and [37], indicate that with increased sub-

cooling, a higher q/A is necessary to generate sufficient vapor

and develop the slug or froth flow regimes. For example, the

(q/A)cr at point 1 in Fig. 36 would not be sufficient to cause

the slug or froth regime for operating line 2. Once the flow regime is

established, the quenching effect is still greater than the

insulating effect because of the colder quenching liquid at the

higher subcoolings. The volumetric heat generation will have

to increase sufficiently to counterbalance this subcooled liquid

effect.

Instead of continuously decreasing as AHsub decreases, (q/A)cr

has a minimum near zero subcooling, particularly at low pressures
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[5,6,36]. Large voids exist in the slug flow regime for these

particular conditions [37]. Consequently a higher throughput

velocity results from this increased void fraction. The arguments

used to describe the mass velocity effect can now be similarly

applied here. The increased velocity, therefore, explains why

the (q/A)cr achieves a minimum.

5.1.3 Pressure

CHF increases with pressure up to 300 - 800 psia as shown

in Fig. 2. Using the model, the observed increases of

CHF with pressure can be explained satisfactorily. Fig. 37

illustrates that the heat flux must be increased in order

to achieve slug flow as the pressure is increased from 30 to 100

psia, while keeping G, L, D and H. constant.
in

Since the bubbles are smaller at higher pressures, the bubble

population must increase to have sufficient vapor for slug or froth

flow. This is effected by increasing the heat flux. For the same

subcooling, the surface temperature rise is smaller at high pressures

because of the greater conduction losses from under the smaller

diameter dry spot,i.e. smaller initial bubble size. Using the

computer model, a comparison of two different dry spot sizes

confirmed that the temperature rise would be less for the smaller

dry spot (Table E-4). Thus to reach the critical condition,

ATrise Tquench , q/V or q/A must be increased.
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Although the proposed model does suggest that CHF increases

with P, it appears that the model, for the present at least, does

not show why CHF should decrease again at very high pressure (Fig. 2).

This may imply that the model is limited to the low pressure range

5.1.4 Diameter

CHF increases with decreasing diameter as shown in Fig. 5.

However, this plot is not suitable for a realistic assessment of the

percentage increase in (q/A) cr, since the parametric distortion is not

accounted for. The diameter effect can best be depicted by holding

G, P, L/D, and H. constant as shown in Fig. 38. CHF is still substan-
in

tially increased with the smaller diameter tube; however, the percentage

increase is less than would be implied by comparing at constant Hout'

as in Fig. 5.

It appears to be reasonable to assume that the void fraction, for

similar local flow conditions, increases as the tube diameter decreases.

Bubble size and development of the bubble boundary layer should be '

relatively independent of tube size; hence, the void fraction should be

larger for the smaller diameter tube as sketched in Fig. 39. This

produces a significantly higher velocity in the smaller tube, with the

result that (q/A)cr should be increased in accordance with the arguments

advanced in Sections 5.1.1 and 5.1.2.

This qualitative description is, however, in apparent disagreement

with the flow regime boundaries indicated in Fig. 21, which imply that

the larger tube has the higher void fraction. This inconsistency can
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be resolved by noting that the formation of slug flow is probably

suppressed in the smaller tube due to the much shorter transit time

(shorter length and higher velocity). The flow regime observations

are accurate; however, in this case they are not indicative of the

void fraction.

5.1.5 Length

Length does not represent a major effect on (q/A)cr for L/D

greater than about 35 [5], keeping G, P, AHsub and D constant.

For L/D less than 35, (q/A)cr increases with decreasing L. The

transit time through the shorter tube is decreased to such an

extent that agglomeration of the bubbles is prevented; slug or

froth flow is thus suppressed. In addition, the high single-

phase entrance heat-transfer effect probably delays boiling

until further into the tube. A higher heat flux is thus necessary

to counter these two effects.

5.1.6 Surface Tension

Surface tension (a) effects are normally of secondary impor-

tance since they appear only when additives are used to substantially

decrease the surface tension. Several investigators [5, 54, 70] have clearly

shown that CHF decreases with decreasing surface tension. Frost [54] found,

by means of high speed movies, that the amount of vapor generated in pure

water with reduced 0, compared to that generated in pure water at

the same heat flux, is much greater. Thus a lower heat flux is

necessary to create the flow conditions of the model.

5.1.7 Wall Thickness and Thermal Diffusivity

The effects of these two variables on CHF have had minimal

experimental examination. The proposed model is inherently related
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to the volumetric heat generation and any substantial increase of

q/V will certainly allow AT rise to be greater than ATquench for

equal time spans, all other conditions being identical. For

identical heat fluxes, all other variables the same, the thin-

walled tube will have a greater q/V. Thus the AT rise will be

larger than that of the thicker walled tube. This indicates that

the thicker walled tube could maintain a higher q/V before the

critical condition is reached. This was seen to be the case in

testing the computer program using two different wall thicknesses

(Table E-4).

Since the available evidence of a wall thickness effect

[14,15,16,17] was contradictary and inapplicable to the present

subcooled flow conditions, a series of CHF tests were conducted

to test this proposed wall effect. Table E-5 lists the twelve

tests which were conducted for the wall thicknesses of 0.012 in.

and 0.078 in. The data are plotted in Fig. 40. The points which

should be compared are on the same operating line, i.e. G, P, Hin

are the same. The increase of (q/A)cr with the 0.078.in. wall is

dramatic. At the lower velocity the (q/A)cr increased 58 percent,

while at the highest velocity, (q/A)cr increased 6 percent.

Heat conduction improves with an increased thermal diffusi-

vity, a. Thus for a given heat flux, the temperature rise under

a dry spot would be less for the high a metal. This implies

that the surface can withstand a higher q/A before serious over-

heating occurs. Thus metals like aluminum and molybdenum would

be expected to have a higher CHF, all other conditions being the
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same. A comparison of stainless steel (a = 0.172 ft 2/hr) and

molybdenum (a = 2.07 ft 2/hr), using the computer program, showed

that the surface temperature rise for molybdenum is substantially

decreased (Table E-4).

5.2 Comparison of CHF Data with Other Experimenters

To show that the values of (q/A)cr found during this entire

study were representative of that of other published data was

difficult for annular flow due to a lack of data for comparable

test conditions. The annular CHF data of Frost [54] , which

probably best match the conditions of the present data are in

good agreement with present data as shown in Fig. 41. Figure 42

indicates that the present tube data are comparable to those pre-

viously taken at M.I.T. for approximately the same conditions.

This comparison indicates that the present data are entirely repre-

sentative of typical stable CHF data.

5.3 CHF Model as a Prediction Tool

Much of the previous discussion of parametric effects is based

on a combination of experimental fact and physical intuition. To

analytically predict (q/A)cr by means of the model, specifically

by use of the computer program, is possible in principle. A

method of iteration is envisioned, whereby, for a given system and

operating conditions, a check is made to verify that slug or froth

flow exists. Then it would be necessary to show that the dry spot

initiated by violent nucleate boiling is stable for the particular
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conditions. If it is, the final check would be to see whether

AT rise is greater than AT quench; If so, then q/A = (q/A) c.

The heat flux would be incremented, starting from a low value, until

the necessary conditions of flow regime, dry spot stability, and

temperature increase are satisfied.

Unfortunately,none of these interelated conditions have yet

been examined or understood in any detail. For example, there are

presently only two extensive studies of flow regimes near CHF:

Bergles and Suo [47] for pressures greater than 500 psia, and Fiori

and Bergles [37] for pressures below 100 psia. Both works, however,

are experimental and examine the gross changes of flow regime

with changing flow conditions. The mechanisms causing a particular

flow regime and the cross-coupling effects of geometry, flow condi-

tions, and heat flux have not yet been resolved. Thus, since no

adequate theory exists which can relate the system parameters to the

flow regimes, it would be necessary to conduct more flow regime

studies to delineate the slug or froth flow regimes for a variety of

conditions.

Another necessary step for the CHF prediction technique is to

show that the dry spot under the vapor bubble is stable. Much has

been written [51, 58, 64, 65] about the formation and stability of

a dry patch formed in nucleation or dryout of a two-phase annular

flow. In the present study, it is assumed that the film under a

vapor void is quite similar to annular flow; thus the previous works

should have application here. A recent study by McPherson [56] is
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representative of the approach used in attacking the film stability

problem. McPherson considered six forces acting on a liquid film

upstream of a dry patch. He summed up the axial contributions of

these forces, and for different assumed film velocity profiles,

showed that the resultant force, F, determined whether the dry

patch was stable (F = 0), was rewetted (F > 0), or grew upstream

( F < 0). He points out that his theory is still inadequate since

he does not know such physical parameters as film surface temper-

ature at the triple interface or the contact angle. His force

equation does show that increased film (hence flow) velocities

contribute to a positive axial force, and thus film recovery.

Although this qualitative evidence supports the arguments used in

the discussion of parametric effects, quantitative dry spot stabi-

lity analysis is presently impossible.

To calculate the wall temperature it is necessary to know the

size of the dry spot and the time interval or frequency of the dry

spot occurrence. The dry spot size is probably related to the nucle-

ating bubble size. Unfortunately, representative studies [57, 58,

59, 60] of bubble growth are for conditions far removed from the

high heat flux, subcooled forced convection conditions of the present

study. Thus the dry spot size must be assumed.

There is no method to predict the frequency of slug or froth

flow. Thus the necessary time intervals can only be approximated,

perhaps by use of an estimate of the size of the vapor clot and the
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throughput velocity. If the size of the clot is represented by

a characteristic dimension, diameter for instance, and if the void

fraction determines the throughput velocity, the time variations

can be approximated. In void fraction predictions for subcooled

flow, two flow regimes are commonly assumed [61, 62, 63], i.e.,

a wall voidage (First) region and a bulk voidage (Second) region.

Figure 43 suggests that void fraction data have not been taken for

the conditions of interest in this study. Thus it appears that

only with experimental measurements, possibly using techniques

developed in this work, can the time span be determined.

It is obvious from this discussion that CHF cannot be predicted

analytically using first principles. If it is desired to develop

a prediction method in the light of the actual physical conditions

shown to exist at CHF, much more fundamental research would have to

be conducted.

mammmmemmen1m100i
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Chapter 6

CONCLUSIONS

A new model of the CHF phenomenon in subcooled flow boiling

has been formulated. Near the CHF condition, and as a large vapor

clot passes over the heated surface, nucleating bubbles break the

superheated liquid film and cause a stable dry spot. This results

in an increasing local surface temperature until the vapor passes

the site and the dry spot is quenched by a liquid slug. At CHF,

the volumetric heat generation., slug frequency, and void fraction

are such that the temperature rise resulting from the dry spot is

greater than the temperature drop during quenching. An unstable

situation results where the temperature of this point continues to

rise after each vapor clot passes the site, until the Leidenfrost

temperature is reached, at which point quenching is prevented and

destruction is generally inevitable.

The experimental evidence obtained with water at pressures

below 100 psia, which supports the validity of this CHF model is:

1. The flow regime for high subcooling CHF conditions for tube

and annular geometries is either slug or froth.

2. Nucleation exists in the liquid film underneath the vapor

clots.

3. The extremely localized nature of the CHF phenomenon was

observed by colored movies, still picture photography, and the

pin-holes in the destroyed test sections.
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4. The cyclically increasing surface temperature, described

by the model, was shown to exist at CHF.

5. (q/A)cr increased with tube wall thickness.

The transient heat conduction equation for the tube wall was

solved for a variety of flow conditions utilizing experimental

flow structure information. The wall temperature oscillations with

increasing average temperature, were duplicated at CHF; thus the

mathematical formulation supported the model. To use this program

as a prediction tool is presently impossible since the necessary

program input information concerning the flow structure cannot be

predicted.

By means of the model, the parametric effects of mass velocity,

pressure, subcooling, diameter, length, tube material, and tube wall

thickness can be reasonably explained. A comparative study was

made to resolve the influence of tube wall thickness; increasing

wall thickness should increase (q/A)cr according to the model. It

was found that (q/A)cr was increased by up to 58 percent when the

wall thickness was increased from 0.012 to 0.078 in. This wall effect

can probably explain some of the differences in data between differ-

ent investigations which may have used equal tube diameters but differ-

ent wall thicknesses.

Several new experimental techniques have been developed to

examine the subcooled CHF condition. A thermocouple at the heat transfer

surface provided an excellent indication of the temperature fluctu-

ations. The traversing electrical flow regime probe allowed examin-

ation of the liquid film layer, and probably can be used in measuring
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film thicknesses. A television video system was used for the first

time in a CHF study and found to be a very versatile experimental

device.

The desire to use this new and accurate picture of the CHF

condition for subcooled flow boiling as a prediction tool has shown

the necessity of detailed flow structure studies. Work in bubble

dynamics and film stability must also be extended to the present

conditions. For further understanding of the CHF phenomenon, it

appears that emphasis should be placed on the microscopic nature

of CHF rather than on simply collecting more CHF data.
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Appendix A

EXPERIMENTAL FACILITIES AND TECHNIQUES

A.l Description of Apparatus

A.l.1 Hydraulic System

The experimental facility used was the low-pressure test

loop located in the MIT Heat Transfer Laboratory. The basic

apparatus was designed and constructed in 1961 [5].

A schematic of the loop is presented in Fig. 44. The

loop is designed to accept vertical and horizontal test sections.

The pipings and fittings are made of brass and stainless steel

for corrosion resistance. Rayon-reinforced rubber hose is used

where flexible connections are required. Distilled water is

circulated by a Westco bronze, two-stage, regenerative pump

providing a discharge pressure of 260 psig at 3.6 gpm. The

pump is driven through a flexible coupling by a 3-hp Allis-

Chalmers induction motor. A Fulflo filter is installed at the

pump inlet. Pressure fluctuations at the outlet of the pump

are damped out by means of a 2.6-gal Greer accumulator charged

with nitrogen to an initial pressure of 40 psig. This

accumulator contains a flexible bladder-type separator which

prevents the nitrogen from being absorbed by the system water.

After the accumulator, the flow splits into the by-pass line

and the test-section line.

In the test-section line, fluid flows through a Fischer-

Porter flowrator followed by a preheater, thence through a

Hoke metering valve and the test section, after which it
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merges with fluid from the by-pass line. The flow then goes

through the heat exchanger and returns to the pump. The pre-

heater consists of four Chromalox heaters of approximately 6

kw each. Three of these are controlled simply with "off-on"

switches while the fourth can provide a continuous range from

0 to 6 kw by means of a bank of two variacs mounted on the

test bench. For the majority of tests, these preheaters were

not used since it was necessary to use the coldest water

temperature available to achieve the high subcoolings of the

experiments. Quick-action Jamesbury ball valves are installed

before the inlet to the flowrator and after the exit from the

test section. The exit valve is also used to adjust the test-

section pressure.

Flow through the by-pass line is controlled by a ball

vdlve, on each side of which there is a 300-psig pressure gage.

Pump operating pressures, and hence the pressure upstream of

the test section, is controlled by this valve.

The heat exchanger is a counterflow type with system

water flowing in the inner tube and city water in the outer

annulus. Hence the lower temperature limit was determined by

the city water supply and season of the year. Test-section inlet

temperatures varied from 38 F in the winter to 700 F in the summer.

A Fulflo filter is installed on the city water line to reduce

scale formation in the exchanger.
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The distilled water was deionized continously by passing

a portion of the flow through four mixed-bed resin demineralizer

units. A 4.7-gal degassing tank is provided with five electri-

cal heaters (3-200 vac and 2-100 vac). This tank also serves as a

surge tank. A 15-gal stainless-steel storage tank for filling

the system is mounted directly above the degassing tank and can

be filled with distilled water from standard 5-gal bottles with

a small Hypro pump.

A.l.2 Power Supply

Test-section electrical power is provided by two 36-kw

dc generators connected in series. Each generator is rated

at 12 volts and 3000 amperes. The power control console

permits coarse or fine control from 0 to 24 volts. A water-

cooled shunt installed in parallel with the test section pro-

tects the generators against the shock of the sudden open

circuit which occurs at burnout. Power is transmitted from the

main bus to the test section by water-cooled power leads.

Rubber hose connected both inlet and exit chamber plenums to

the main loop in order to electrically isolate the test section.

The test section was then separately grounded.

A.l.3 Instrumentation

The basic temperature measurements were measured by copper-

constantan thermocouples made from 30-gauge Leeds and Northrup

duplex wire. The test-section inlet temperature was measured by
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a thermocouple directly in the fluid stream, upstream of the heated

section. Details are shown in the schematics of the various test

sections.

All pressures were read on Bourdon-type gages located as

shown in Fig. 44. The test-section inlet and exit pressures

were measured with Helicoid 8-1/2 in. gages of 200 psig and

100 psig, respectively. Both are specified to an accurary of

+ 0.25% of full scale.

A variety of metering tubes and floats, which could be

installed interchangeably in the basic Fischer-Porter flow-

meter housing, provided measurement of the test-section flow

from 1.5 to 4000 lbm/hr.

The voltage drop across the test section was read directly,

either on a Weston multiple-range dc voltmeter with specified

accuracy of + 1/2 percent or on a USC Digitec, Digital D.C.

Voltmeter Model 204 with a specified accuracy of .1 percent.

The current flow was determined by using the Minneapolis-

Honeywell, Brown recorder to measure the voltage drop across a

calibrated shunt (60.17 amp/mv) in series with the test section.

A.2 Description of Test Sections and Their Instrumentation

Both annular and straight tube test sections were used for

the experimental program. Appendix E lists the test data and the

dimensions of all the test sections.
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A.2.1 The Glass Annular Test Section

Fig. 45 shows the schematic of the annular glass test

section. Pressure and temperature measurements were made in

the plenums. Precision-bore pyrex tubing was used. The Hoke

metering valve was placed immediately before the entrance

plenum to eliminate premature burnouts due to the effects of

system compressibility as described by Maulbetsch [20].

To determine whether the 900 change of flow direction in

the exit plenum affected the slug flow regime, the exit plenum

was redesigned. Fig. 46 shows the changes made. The flow

now is straight-through and the power connection enters from

the side. The vertical shorting bar is pushed into the hori-

zontal bar and is held tight by a set screw. This design was

exceptionally versatile and allowed for very good centering of

the heated section inside the glass annulus.

The heated section of 304 SS, 0.242 in. i.d. and 0.035 in.

wall was 10 in. long. Silver-soldered to both ends were copper

tubes, 0.312 in. o.d. and 0.187 in i.d. Power connections were

made to the copper tubes by means of brass or aluminum bushings.

These annular test sections had special surface temperature

instrumentation. A 0.0135 in. hole was drilled through the 0.035

in. SS wall approximately 1/4 in. from the end of the heated section.

Copper-constantan 36 gage wire with teflon insulation was used for

the thermocouple. A nominal bead size of 0.014 in. was produced
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by the Dynatech Model 116 Thermocouple Welder. Figure 47 illustrates

the construction details. The wire leads were fed through the hole,

pulled through the inside of the SS tube and out through the copper

tube. Teflon tubing, 0.030 in. diameter, was slipped over the thermo-

couple wire and then the bead was epoxied onto the SS tube by high

thermal conductivity,0.975 Btu/hr-ft-F*, Eccobond Paste 99 made by

Emerson and Cummings, Inc. Eccobond Solder 58c, a silver based epoxy,

was also used with a thermal conductivity greater than 16.6. Temper-

ature observations were more difficult to interpret with the silver

epoxy, probably because of its very low volumetric resistivity (less

than 2 x 10-3 ohm-cm) which allowed the thermocouple to pick up much

more d.c. generator noise and general a.c. noise. Consequently,

Eccobond 99 was used for most tests. The thermocouple reading pro-

bably had impressed on it part of the voltage gradient existing

across the test section. This did not cause any problems however,

since the desired signal was the amplitude of the temperature fluc-

tuation rather than an absolute value of the temperature level.

Figure 48 shows the schematic setup of the instrumentation. The

36 gage wire was connected to 30 gage wire which was led to a

differential operational amplifier. The temperature signal was split,

part of it going through the amplifier and the rest bypassing it. The

signals were placed on separate galvonometers in the Recording Oscillo-

graph of Consolidated Electrodynamics Corporation. The Type 5-124

oscillograph is a multi-channel, portable, direct-recording photo-

graphic type instrument. It uses 7-inch wide print-out recording

paper and provides up to 18 individual channels of data.
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A.2.2 Metal Annulus

To examine the flow regimes at CHF, the electric probe

(described in detail by Fiori and Bergles [37])was mounted on

the outside metal tube of the annular geometry. Fig. 49

illustrates the probe mounting. Note that the metal tube was

electrically insulated from both flow plenums.

The probe was constructed from 0.013 in. spring wire insulated

by teflon tubing, increasing the overall size to 0.025 in. The

hypordermic steel tubes surrounding the probe gave it sufficient

rigidity that the probe position could be determined to within 0.0005 in.

The probe measures the resistance between its exposed tip

and the metal wall. When water is in the tube, the voltage

across the 5 megohm resistor, shown in Fig. 50, is maximum.

With high resistance caused by vapor in the tube, the voltage

is at a minimum. The amplitude of the voltage signal depends upon

the water conductivity, which is a function of water impurities

and water temperature. Since the shape rather than the signal

amplitude is important, no attempt was made to maintain the

conductivity at a particular value. It was always above 0.3

meghohm-cm as measured by a Barnstead Purity Meter, at ambient conditions.

A.2.3 Straight Tube Test Sections

Figure 51 illustrates the test section used to test the wall

thickness effect. The power bushings were made of brass and the
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pressure tap hole at the exit end of the tube was 0.015 in. in

diameter.

Figure 52 shows the straight tube with a fixed probe mounted

separately. This test section was used to verify that the flow

regimes existing in annular test sections also existed inside

round tubes. Several tests were continued to CHF. The probe

mounting allowed rapid changing of test sections without

rebuilding the probe after each CHF run. Special plugs were

silver soldered into the combined exit test section to accommodate

the 0.094 in. tubes. The probe instrumentation was similar to that

used for the annulus.

A.3 Experimental Procedure

A.3.1 General Loop Operation

After the test section was installed, the loop and degassing

tank were filled with water from the supply tank. The water in

the degassing tank was then brought to a boil while the loop water

was circulated with the heat exchanger coolant off. The degassing

tank vent was closed when the tank began to boil,and the pressure

in the tank was allowed to increase to a level of from 6 to 15 psig.

This placed the pump inlet above atmospheric pressure, and prevented

air from being drawn in around the pump seals. Degassing was then

accomplished by by-passing a portion of the cool loop water into

the top of the vigorously boiling degassing tank. This was continued

until the temperature of the loop rose to approximately 1800F.
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A standard Winkler analysis described by Brown (651 and Lopina

[66] indicated that this method of degassing reduced the air

content to less than .2 cc air/liter. After degassing, the loop water

was adjusted to the desired inlet temperatureand the desired

pressures were set. The generators also were started and allowed

to warm up. Regardless of the purpose of a particular run,

the voltage drop across the test section, the current, pressure

at the exit,and the inlet temperature were always recorded. Such

values as inlet pressure, exit temperature, picture number, water

conductivity, and pressure on the upstream side of the Hoke metering

valve were often recorded.

A.3.2 Annular Test Section Procedures

The oscillograph recorder was calibrated for every test

using the surface temperature thermocouple. With the generators

on, but without power in the test section, the temperature of

the water was changed by means of the preheaters. The exit

temperature obtained from the Brown Recorder was used as a

basis for calibrating the trace of the oscillograph galvonometers.

The amplification for the wall thermocouple signal varied for

each testbut usually was near 30. A 0.1 my thermocouple signal

normally was equivalent to a 0.1 in. horizontal deflection using

the 7-324 galvonometer. After being reduced over a 1200 ohm resistor,

the unamplified signal led to a 7-339 galvonometer. The calibration

remained fairly constant giving an 0.1 in. deflection for a 0.5 my

temperature change. Absolute temperature measurements with the wall
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thermocouple could not be made because of d.c. pickup, electric

field, and other disturbances, a very good description of which

is contained in a paper by Green and Hunt [67]. Since the tem-

perature variation was of primary concern, the only serious

interference with the desired signal was 60 cycle a.c. noise.

This was minimized by proper shielding and grounding of equip-

ment,and never was strong enough to seriously interfere with

signal interpretation.

The recorder paper speed of 4 in./sec was the optimum

speed both for economy and for signal clarity and interpretation.

The recorder was on during all changes of power and when steady

state was achieved. Near CHF, the recorder was on continuously

to guarantee recording the temperature trace at CHF.

Placing the flow regime probe signal on the recorder met with

some succuss. Figure 53 shows a trace having both the thermocouple

and flow regime probe signals. It was very difficult to eliminate

all the a.c. noise on the probe signal, consequently only the large

vapor slugs could be clearly distinguished. Only one test used the

probe and thermocouple simultaneously.

Whenever Fastax movies were taken, a 2 v signal activated a

3-326 galvonometer to indicate on the recording paper the camera
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motor startup and the start of the film timing light. This

allowed time synchronization of the movie with the thermocouple

signal. For single picture studies, a signal deflected the

3-339 galvonometer whenever the microflash discharged.

The actual operational procedure to obtain a movie slightly

before or at CHF required coordinated action of the test team.

The power was increased in .5 to 1 volt increments until the

power was approximately 85 percent of CHF. The violent down-

stream pipe vibrations and exit pressure ocsillations indicated

that slug flow existed and that CHF was being approached. The

recorder was turned on for continuous operation, and the trace

was marked after every incremental (.3-.4 volts) change in power.

The camera, and approximately .5 seconds later the film timing

marker, were turned on when it appeared that CHF was imminent.

Various attempts were made to force the critical condition as

the camera was turned on ,but due to a very limited camera run

(4 secs), CHF was never filmed using this method. The method

finally used was to increment the voltage by .6 to .8 volts

and simultaneously start the camera.

The time for a normal test, beginning with the first power

increase to the test section until destruction, averaged approximately

one hour.
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A.3.3 Tube Flow Regime and CHF Studies

The procedures for raising power and data accumulation

were similar to those of the annular tests. The oscillograph

recorder was not used for these tests. By means of the

Techtronix 564 storage oscilloscope, representative flow regime

probe signals could be stored and photographed using a Polaroid

Techtronix camera system. Because the primary purpose of these

tests was to gather flow regime information, CHF, except for

several instances, was avoided.

The tube wall thickness experiments were all carried to

CHF. T. , T , w, P , E, and I were recorded for each power

increase. Power was slowly increased in order to avoid any

power surges and possible premature destruction.

A.4 Photographic Techniques

Although there were seven phases of the photographic

study as listed in Table E-6, they can be divided into four

categories: oscilloscope photography, microflash photography,

movie (Fastax) photography, and video tape photography.

A.4.1 Oscilloscope Photography

Two types of oscilloscopes were used. The Techtronix

502 scope showed a continuous probe signal. Since the trace

could not be stored, several photographs at any particular

power setting desired were necessary to obtain the represen-

tative flow regime signal. The camera used Type 47 Polaroid
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film and the settings were f4.0 at 1/30 sec.

The Techtronix 564 scope and Polaroid pack film camera

had the definite advantage of saving the representative trace

for photographing. Various combinations of f-stops and speeds,

using Type 107 Polaroid film, gave excellent results. This

oscilloscope and camera proved to be a superior experimental

tool for the flow regime studies.

A.4.2 Microflash Photography

Polaroid and 35 mm cameras were used in conjunction with

the glass annular test section. A General Radio Company Type

1530-A Microflash was used to illuminate the test section. The

2-microsecond light pulse effectively stopped the motion of the

flow. The camera, mounted on a tripod, triggered the microflash

simultaneously with its shutter release. The films used for the

35 mm Contaflex 3 camera were the colored ASA 40 Kodachrome II and

the black and white ASA 400 Tri-X Panchromatic film. Type 42

film was used with the Polaroid camera. Close-up lenses for the

particular camera allowed the camera to be within 4 inches of

the heated section. The relatively high f-stop (f-8) for the

black and white films gave a sufficient depth of field in all

cases. The colored slides were slightly too dark for the light and

lens setup which was available. Consequently most of the still

photography was in black and white.
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The microflash was positioned below the camera and was

covered by a heavy tissue paper which diffused the light. The

background behind the test section was black felt. The

oscillograph was used with the 35 mm photography, and a signal

blip appeared whenever the microflash discharged.

A.4.3 Movie (Fastax) Photography

The Wollensak 16 mm Fastax camera was used for both experi-

mental movie phases. The first phase, using 16 mm Tri-X Negative

Kodak Type 7233 film, was an attempt to photograph, at high

speeds (4,000 frames per sec), an area less than 3/8 in. square

at the probable burnout point. Several difficulties were

experienced during this photographic attempt. For instance, it

was extremely difficult to obtain sufficient lighting on the

subject since the lens, only 3/4 in. away from the subject, blocked

the light. Also the depth of field was extremely small due to

the large f-stops necessary. The black and white film itself had

drawbacks since the various shades of grey were difficult to

interpret. Because of these drawbacks, colored movies, using

Ektrachrome Film Type 7242 EF, were taken at 30 cm from the

subject. Using this distance, the field of view was increased to

almost 3-1/2 inches of the test section.

Three G.E. Photospot 500 W DXB bulbs allowed an f-8 lens

setting at 1200 frames per sec. The motor voltage set at 40 vac
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gave a camera speed of approximately 1200 fps. The camera,

operated remotely, was started by the experimenter who

monitored the continuous oscillograph temperature trace. A

signal appeared on the oscillograph trace as the camera was

turned on and also as the timing light was activated. The

timing device consists of a neon glow lamp enclosed in a small

housing mounted under the drive sprocket in the camera housing.

A small lens in the top of the housing focuses the light on the

edge of the film and produces 120 flashes per second. These marks

on the film provided an accurate means of calculating film speed

and contributed to the interpretation of the oscillograph trace.

A.4.4 Video Tape Photography

An Ampex Model VR-7100 Video Tape System was used to

record one experiment, and the tape recording is on file in the

Heat Transfer Laboratory, MIT. The primary advantage of such a

system for experimental purposes is that a continuous record of

the experiment is obtained. Thus there is no need to guess when

burnout will occur in order to film the phenomenon. The major,

and basically the only, fault of this television system is that

its application can only be qualitative. The photographic speed,

20 frames per sec, is so slow that time-motion studies are impossible

for the experimental conditions examined.
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Appendix B

DATA REDUCTION

The experimental data obtained was reduced by programs written

in FORTRAN IV,and run on the M.I.T. Mechanical Engineering Department

IBM 1130-Computer. Different programs were used depending on the

particular need. Thus the following discussion will cover the calcu-

lation programs only in a general manner.

The input data always contained the inlet and outlet temperature,

exit pressure, voltage across the test section, and voltage across the current

shunt (60.17 amps = 1 my). The temperatures were converted from milli-

volts to degrees by means of a subroutine developed by Scott[68] who

fitted eleven fourth-order polynomials to the copper-constantan thermo-

couple tables. The test section power was determined from the current

and voltage measurements

q = E I

A heat balance to compare qE with q ,

q = T c (T - TW 7 p b in

showed agreement within five percent for all CHF data.

The quality, X, was calculated using

X q E/w + H. -n Hf
X =IEin Hf

fg

The inlet enthalpy, H. , was taken directly from tables read into the

computer. The other thermodynamic properties of steam were calculated

using the polynomials derived by Todreas [69].
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The heat generation per unit volume, q/V, is assumed uniform,

and for the annular test section is

q/A 2 R
q/V - out2 2

(ROut Rin)
Where

R = the cold side radius

out

R. = the hot side radius
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Appendix C

COMPUTER STUDY OF CHF MODEL

C.1 Applicable Theory

The cyclical overheating and quenching of the heated surface

at the location of CHF can be described by the time-dependent differ-

ential heat-conduction equation and appropriate boundary conditions.

For the purposes of the following discussion, the dry spot will be

considered to be underneath a bubble. Figure 54 shows the heated

wall with the bubble insulating the surface. Since the dry spot

radius is small in comparison to the curvature of the tube wall, a

flat-plate geometry is assumed as shown in Fig. 55. Hence, the

actual coordinate in radial direction is labeled z.

The governing differential equation for the flat plate geom-

etry with the origin under the bubble, is:

(r_ 2 2 (/V
S3 T 2T 1 32T (q/V) 1 3T

r 5r (r ) + + r2 92 + k - 3t

For this equation, the metal properties are independent of temperature

and the heat source is uniform. The temperature variation about the

center of the dry spot is assumed to be symmetric, hence:

2
= 0 (2)

and also,

- 0 at r = 0 (3)

The hot surface is adiabatic, giving

= 0 at z corresponding to Rin (4)
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The influence of the temperature variation resulting from the

dry spot is assumed to be negligible at r = rc and hence,

3T_-- = 0 at r = r (5)r c

The value of r is discussed in Section C.3.c

On the water side (z "u R Out) the boundary conditions depend

on time. During a time span At rise' the bubble is on the surface

and for r < rb

3T
-k- = h T - T (6)3z s W s

and for r c r > rb

aT
- = hb (T - Tb (7)

Without the bubble, during a time span Atquench, the conditions are

for r 5 b,

aT
-k = h (T- T) (8)az q W q

and r c > r > rb

aT-k @T = hb W b (9)

It is impossible to arrive at an exact solution to this problem, and

even with further assumptions, an approximate analytical solution

would be extremely difficult. Thus a numerical method of solution

is necessary to solve this time-dependent problem.

C.2 Discussion of Computer Program

The Fortran IV program, listed in Section C.4, computes the temper-

ature variation in the wall as a function of time. To account for the
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different boundary conditions, the tube wall is divided into ten

areas as shown in Fig. 56. The method of analysis is centered

around the finite-difference equations, derived from heat balances

taken about the nodes in each area. There are two sets of equations

for the areas labeled 1, 2, 3 and 8. The applicable set depends

on whether the surface has a dry spot on it as the vapor void passes

over, or whether it is being quenched by the slug. For the node

illustrated in Fig. 56, the finite-difference equation is,

T'(i, j) = a'At {T(i, j)[l/(c'At) - 2/Ar 2  2
(Az)

1 .5
+ T(i - 1,j 2 -ArR(i)

Ar

1 .5
Ar2 +ArR(i)

+ T(i + 1 , j) [ 2 _r R5 i
Ar

+ T(i, j + 1) + T(i, j - 1) +
Az2  Az2

(10)

T', the temperature for the new time, is calculated from the five old

temperatures, T, surrounding the node (i, j). In the Fortran IV lang-

uage, the above equation is written as,

TB(1,J) = A*(TA(IJ) * (1./A - Z.*C - Z*B)

+ TA(I -1,J)*(B-D) + TA(I+1,J) * (B+D)

+TA(IJ+l) * C + TA(IJ-1) * C + 2.*E) (11)
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with

A = AlPHA * HT HR = AR

B = 1/HR2  HZ = AZ

C = 1/HZ2  HT = At

D = .5/(R(I) * HR) E = (q/V)/2 * k

A marching time solution can best describe the method used

in solving for the time-varying wall temperatures. With a given

initial temperature distribution, the time is incremented and a

new temperature at every node is found. These temperatures then are

are used to find the temperatures for the succeeding time incre-

ment. By selecting the proper boundary equations at a particular

time, the unsteady nature of the problem is resolved.

The basic program can go through three cycles of heating and

quenching; these cycles simulate the passage of three slugs over

the surface. The program is applicable to tubes and annuli and is

written to allow flexibility in examining many variations and approx-

imation of the important parameters. Stability of the solution is

assured by selecting the proper time increment, HT, which guarantees

that all temperature coefficients in the finite-difference equations

are positive. The detailed discussion of the assumptions used in the

program to simulate the actual physical conditions at CHF are

discussed in the next section.

C.3 Discussion of Assumptions

The initial temperature distribution is found by using the
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one-dimensional, steady-state conduction equation in the z direc-

tion,

3 2T (q/V)

3z2 k

With the boundary conditions, for the annular test section,

3T
= 0 at z = Rin (13)

and
T(Rout TW (14)

The solution to these equations is

(q/V) 2 2
T(z) = T + -- (R(z) + 2R. R(z) + R - 2R. .R ) (15)W 2k in out in out

This temperature distribution is assumed to be the same function of z

across the wall at any position, r, at initial time zero. Such a

temperature distribution also satisfies all the initial boundary

conditions in the two dimensions.

The initial surface temperature, TW, is found from the McAdams:

[1] correlation for subcooled boiling,

259
T -T = (q/A) (16)W s .19

This correlation has been found [65] to describe very well data for

forced convection,fully-developed boiling from stainless steel.
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The heat transfer coefficient, hb, for the forced convection

boiling, is

h = (q/A) (17)
b (TW - Tb)

Tb is the bulk fluid temperature at the exit and is found from

the first law equation,

T b= Tin + q/(w-c ) (18)

The heat transfer coefficient for steam, hs, is chosen to be

2
a very low value (h = 20 Btu/hr-ft *F) so as to simulate an almost

S

insulated surface.

The use of the heat transfer coefficient, hq , simulates the

quenching of the dry spot area. Fig. 57 shows the variation of h

with time. The solid line shows the actual variation and the broken

line shows the assumed variation. The water is heated until its

temperature is sufficient for incipient boiling. The coefficient

continues to increase with increasing nucleation and remains constant

in the fully-developed region. This rapid change of h is assumed to

vary linearly with time, giving

h - h
h =h +{ b fc t (19)
q fc Atquench

The Atquench is the time during which the slug covers the surface.

The forced-convection heat transfer coefficient, hfc, is calcu-

lated using the well known McAdams [1 ] correlation

wi mmimiliiii 1611111911 Nil W IIIIWIU I Mi HOW i'dil Wi LI
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Nu = 0.023 Re* 8 Pr-4 (20)

The program was written so that the water quenching temperature

and the temperature of the water film above areas 3 and 8 during a

vapor clot passage can be changed. Since these temperatures were

not known and since (Tb - T W) is considered to be the heat transfer

driving force, the water temperatures were assumed to be equal to

the bulk temperature, Tb.

The equations for the saturation temperature, Ts as a function

of pressure were obtained from Todreas [69].

A discussion of the input and output variables, their Fortran

names and their significance will conclude this section.

For the first of three input data cards, the four variables are:

BRAD - The assumed dry spot radius in inches. This size is

held constant since it is impossible to predict the rate of growth

of the dry spot for tie conditions under investigation.

IDIV - is one less than the number of nodes under the dry spot. Its

value determines the grid spacing in the "r" direction.

HLEN - is the heated length in inches.

MC - is the number of nodes in the r direction. It was deter-

mined that 20 nodes were sufficient for this problem because it was
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shown that the dry spot did not influence the temperature at the

20th node.

The second data card requires:

ALPHA - is the thermal diffusivity of the metal test section in

ft 2/hr at 350 *F.

COND in Btu/hr-ft *F is the thermal conductivity of the metal

at 350 *F.

RAIN - is the inside diameter of the glass annulus in inches

and is zero if tube data is used. It is used to find the flow area.

Z - is a dummy variable, sometimes used in the basic program for

logic operations, iterations or any other particular need.

The third card consisted of the actual data. NO is another dummy

variable serving a similar function as Z.

FREQ - is the frequency of the slugs passing the thermocouple.

The value is obtained from the oscilloscope flow-regime probe traces,

from the thermocouple oscillograph traces, or from the colored Fastax

movies.

TIN is the bulk inlet water temperature.

P is the exit pressure in psia.

QONA is the heat flux ( x 10-6 ) for the particular test.

SFRAC is the percent of time that the vapor is over the thermo-

couple during one cycle. The size of the vapor void, and hence water

slug, could thus be altered while the frequency remained constant.

RIN and ROUT are the inner and outer radii, in inches of the heated

%MMWMVWMW =11Mw a1w la"
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tube, regardless of the test configuration.

w is the mass flow rate in lb/hr.

The output is printed after every fifteenth repetition of the

temperature calculations. It contains the time, the arithmetic

average of the four nodes about (r w 0, z Ili Rout or Rin)s the temper-

atures along the surface and those along the axis under the dry spot.

C.4 COMPUTER PROGRAM OF MODEL (FORTRAN IV)

DIMENSION RR(15) ,T A(50,15),TB(50,15),TIMES(1200) ,TAV(1200),e( Q0)

DIMENSION TAI(15)

READ(%l1) IR9 IP
I FORMAT (211)
READ ( IR 9 222) BRAD , IIVHLEN ,MC

222 FORMAT(F5.4,5X, I2g5XF5.2,5XI2)
228 READ(IR,227)ALPHACOND,RAINZ
227 FORMAT(4F8.5)
111 READ( IR,2)NOFREUTIN,PQONiASFRAC*KIN ,kROUTW

2 FORMAT(Ile1OX,3F6.2,F6.3,F4.2,2F5.3,F50*
IF(NO-1) 3C0112,112

'12 WRITE(IP,3)NOFREQTIN,PQONASFRACRINROUTW
3 FORMAT(lH1,3HNO= Il2X,5HFREQ=F6.293X,4HTIN=F6.2,3X ,2hP=F6.4, 3X.

I 5HQONA=F6.3 'MILLION' ,3X, 6HSF RAC=F4.2, 3X94HNINi=F:>. , 3X,4HR I6=
2F5.3,3X92HW=F5.0//)

C HEATED LENGTH' IS AL IN FEET.
AL=HLEN/12.
P1=3e14138
RI = RIN/12#
RO = ROUT/12*
IF ( RA IN) 6-'1,6 1, 611

Allj WPITF(IP,612)RINROUTHLENRAIN
612 FORMAT(10XITHE TEST SECTION IS AN ANNULUSWITH DIviENSIONS(I.14 I\Cr

1ES) '/1X,'THF METAL TUBE INSIDE RADIUS'92XF6.494XITHE META' TUB
2E O'UTSIDE RADIUS 1,F6.4/lX,'THE HEATED LENGTH IS 'F6.3912Xt
31THF INSIDE ?AT'J OF THE ANNULUS IF6.4//)

HA2FA = PI4 RO*2.*AL
G1 TO 777

6 1 ':'rTTF(P,636)RINROUTHLEN
636 FOPMAT(10X,TriE TEST SECTION IS A ROUND TUBE WITH DIMENSIONS (IN I

1NCHES)1/1X,'THE METAL TUBE INSIDE RADIUS',2X9F6.494X91THE iviTAL TU
2,E. OUTSIDE RADIUS *,F6.4/lX'THE HEATED LENGTH IS 'F6.3, /)

PAR A=PT*2.*RI*AL
777 7"1=Bf RAD/12.

QON/A = QONA*1. e6
C THE ASSUMED BUhRLE RADIUS IS BRAD

C"IIV = InIV



C THE INCREMENT OF DISTANCE IN THE RHO DIRECTION
HR=BRAD1/CODIV

C iB IS THE END NODE FOR THE BUBBLE
MB=IDIV + 1
WRITE(IPv221)HLEN9BRAD9MBMC

221 FORMAT(lXs'THE HEATED LENGTH IS ',F5.2.5X,'THE DRY SPOT RADIUS IS
1'9F5.39' INCHES',5X,'THE NUmdER OF NODES UNDi oUboLE IS l912/
21X9,THE NUMBER OF NODES IN THE RHO DIRECTION IS',Ik/)
H-Z=(RO-RI)/14.
HSTEm 20.

C HMC IS THE MC ADAMS FORCED CONVECTION HEAT TRANSFLR COEEFICIENT.
HMC=2?70.

C
,IF (P-450.) 301,310,310

321 PS a ALOG(10.*P)
TSw 3.5157890E 1+?.459256bE+1*PS +2.1182069*(PS4*2)
1-3.4144740E-1*(PSw*3) +1.5741642E-1*(PS**4)
2 -3.1329585E-2*(PS**5) +3*865i8282E-3*('PS**6)
3 -2.40'1784E-4*(PS**7) +6.8401559E-6*(PS**8)
GO TO 5

C
410 PF = ALOG(P)

TS= 1.1545164E+4 -8.3860182E+3*PS +2.4777661E+3*(PS**2)
1 -3.6144271F+2*(PS**3) +2.6690978F+1*(PS**4
2 1 -7.8t73813E-1*(PS**5)

C
5 DTSAT = (QONA/.19)**.259

TW= TS+DTSAT
TSTE = TS
TV'AT = TIN + OONA*HAREA/W
DTSUF = TS-TWAT
HUATt" = QONA / (TM-TWAT)

C HWATS IS THE COEFFICIENT FOR WATER WHEN LIQUID FILM COVERS SURFACE.
HWATS = HWATW
TWATS = TWAT
B = 1./(HR*HR)
C - 1./(HZ*HZ)
QVOL1= QONA*2.*RO/(RO*RO-RI*RI)
OVOL= QONA/(RO-RI)
WRITE(IP,10002)QVOL19QVOL

1C02 FORMAT(lXt'THE VOLUMETRIC HEAT STRENGTH FOR A CURVED SURFACE IS '
1E11.4 /1X, 'THE VOLUMETRIC HEAT STRENGTH FOR A FLAT PLATE IS *,
2E11.4//)

C FREQUENCY OF SLUGS PER SEC (FREQ) IS CONVERTED TO PERIOD IN HRS.
PERIO = le/(FREQ*3.6E3)

C SLOPE IS FOR THE TIME VARIATION OF HWATO
SLOPE = (HWATW-HMC)/CPERIO*(l*-SFRAC))

C CHECKING FOR STABILITY
OIV = 20C.

C HT IS THE TIME INCREMENT*
6 HT = PERIO/DIV

A = ALPHA * HT
STAB = 2.* A * ( HWATW/(COND*HZ) + 2.*B +C)
IF (1-STAB) 7,8,8

8 HTS m HT*3.6E6
WRITE(IP,9)QONAHIWATWDTSUBTWATHTSDIVTS #HRHZ

9 FORMAT(1X. 5HQONA=E11.493X,6HHWATWuF6.O,3X, 6HDTSUBaF6.2,3X#
1SHTWAT=F6.2/1X# 'STABILITY CRITERIA IS SATISFIED. HTS=',
2F6.3,'MSECS',5X9 'THE PERIOD IS DIVIDED BY DIV z',F6.1.2X,
33HTSuF6.2/1X,3HHR=F9.7,FT'5X3HHZ=F9.79'FT'//)
GO TO 99

7 DIV = DIV + 10.
GO TO 6

C NOW CALCULATE THE VARIOUS POINTS IN THE Z DIREC:i0N IN ORDER TO GET

C THE INITIAL TEMP DISTRIBUTION. (THIS IS THE ACTUAL RADIAL DIRECTION.)
IF(RAIN)999,999.99

99 DO 991 Jsl.15
RR(J)=RO-(J-1)*HZ

C CALCULATE THE INITAL TEMP DISTR IF CURVED PLATE
TA1(J) - TW +OVOL1/(4.*COND)*(-RR(J)**2+2.*RI*RI*

1ALOG(RR(J)/RO) + RO*RO)
C NOW CALCULATE THE INITIAL TEMP DISTRIBUTION IN Z DIRECTION.

991 TA(1,J) a TW + QVOL/(2.*COND)*(-RR(J)**2 + 2.*RI*RR(J) + RO*RO
1 -2.*RI*RO)

GO TO 10000
999 DO 998 J=115

C MUST REVERSE THE ORDER OF J FOR A TUBE
RR(J) = RI + (J-1)*HZ
TA(1lJ)= TW + QVOL/(2.*COND)*(-RR(J) **2 + 2.*RO*RR(J)

1 + RI*RI -2.*RO*RI)
TA1(J) = TW + QVOL1/(4.*COND)* (-RR(J) ** 2 + RI*RI

I + RO*RO*2.*ALOG(RR(J)/RI))
998 CONTINUE

10COO DO 100 1=29MC
DO 100 J*115

100 TA(IJ) = TA(1J)
TIMES(l) a 0.0
WRITE(IP9993) (TA(1J),Jul,15).(TA1(J),J=1.15)

993 FORMAT(1X0'TEMPERATURE DISTRIBUTION USED IN PROGRAM'/
11X'TB( 1J)='v15F7.2/
2 1X9'TEMPERATURE DISTRIBUTION ASSUMING A CURVED SURFACE VIS FLAT'/
32X#'TA1(J)u'l15F7.2//)

C GO THROUGH TWO CYCLES FOR EACH RUN
N=2.*DIV + 1.2
TIME = 0.0
TIME1 a 0.0
Lu1

R(MC)=(MC-1)*HR
F=(R(MC)-HR/2.)/(R(MC)-HR/4.)
DO 10 K * 2sN

C TIMES FOR EXTERNAL USE IN MSECSe
TIME = TIME + HT
TIMES(K) = TIME * 3.6E6

TIME1=TIME1+HT
DO 11 J*115
DO 12 I1leMC
R(I) a (I-1)*HR
IF(1-1)104.104,103

103 0 m .5/(R(I)*HR)
104 E a QVOL/(2.*COND)

C CHECKS WHETHER ON THE FIRST ROW
IF(J-1) 138,138914

C CHECKS FOR WHETHER BUBBLE OR WATER ON THE SURFACE
138 IF(TIME - 3.*PERIO)139v139s135
135 CALL EXIT
139 IF(TIME - (3s-SFRAC/2.)*PERIO)140,140.13
140 IF(TIME- (2.+SFRAC/2.)*PERIO)141.141,201
141 IF(TIME- (2.-SFRAC/2.)*PERIO) 1429142,13
142 IF(TIME-(1.+SFRAC/2.)*PERIO)143,143,201



143 IF(TIME-(1.-SFRAC/2.)*PERIO)144,144,13
144 IF (TIME-(SFRAC/2.*PERIO))13913.201
13 TIME1 = -HT

C IF IT IS THE BUBB'.E IT CAN BE IN AREA 1,2,3
IF(1-1)1515#16

C EQT 15 Is THE EQUATION FOR REGION 1 WITH BUBBLES OVER IT.

15 TB(I#J) = 2.*A*( TA(IJ)*(*5/A - 2.*B- C - HSTE / (COND*HZ))
1+ 2.*B* TA(I+1,J) + C * TA(IJ+1) + E + HSTE *TSTE /(COND*HZ))

GO TO 12
C IF STILL UNDER BUBBLE BUT NOT AT (19l),THUS IN AREA 2

16 IF (J-MB) 17,17918
17 TB(IJ) = 2.*A*( TA (IoJ) * .5/A - HSTE/(COND*HZ) - B - C)

1 + HSTE * TSTE / (COND*HZ) + TA(I-l9J)**5*(B-D)
2 + TA(I+1,J) *.5*(R+D) + TA(IJ+1)*C + E)
GO TO 12

C IFSLUG ON SURFACE IN AREA 8

18 IF(I-MC)181,182,182
182 TB(CIJ3 = 2.*A*(TA(IJ)*( 95 / A - F * B - C - HWATS/(COND*HZ))

1 + TA(I.J+1)*C + HWATS*TWATS/(COND*HZ)+ F * B * TA(I-1J) + E)

GO TO 12
C IF SLUG ONSURFACE,IN AREA 3 WITH LIQUID FILM COVERING THE REMAINING SURFACE

181 TB(IJ) = 2.*A*( TA (IJ) * ( .5/A -HWATS/(COND*HZ) - B - C)
1 + HWATS*TWATS / (COND*HZ) + TA(I-1J)**5*(B-D)
2 + TA(I+1,J) *.5*(B + D) + TA(I#J+1)*C + E)
GO TO 12

C HWATQ IS THE HEAT TRANSFER COEFFICIENT FOR QUENCHING AT THE HOT SPOT

C HWATQ IS A LINEAR FUNCTION OF TIME
201 HWATQ = HMC+ SLOPE * TIME1

TWATQ=TWAT
IF(I-1)202,202,203

C EQUATION FOR NODE 1 WITH WATER ON IT

202 TB(1IJ) = 2.*A*( TA(IJ)*(*5/A - 2.*8- C - HWATQ/ (COND*HZ))
1+ 2.*B* TA(I+19J) + C * TA(I#J+1) + E + HWATQ*TWATQ /(COND*HZ))
GO TO 12

203 IF(I-MB) 20319203192032
C FOR THE QUENCHED SURFACE UNDER THE BUBBLE

2031 TB(IJ) = 2.*A*( TA (IJ) * ( .5/A -HWATQ/(COND*HZ) - B - C)

1+TWATO*HWATQ / (COND*HZ) + TA(I-1J)*.5*(B-D)
2 + TA(I+1,J) *.5*(B+D) + TA(IJ+1)*C + E)
GO TO 12

2032 IF(I-MC)204,205,205
C EQUATION FOR NODE MCl

205 TB(IJ) a 2.*\*(TA(IJ)*( .5 / A - F * B - C - HWATW/(COND*HZ))

1 + TA(IJ+1)*C'+ HWATW*TWAT/(COND*HZ) + F * B * TA(I-1J) + E)
GO TO 12

C EQUATIONS FDRALL NODES ON SURFACE EXCEPT THE ENDS AND UNDER THE BUBBLE
204 TB(IJ) = 2.*A*( TA (19J) * ( .5/A -HWATW/(COND*HZ) - B - C)

1 +TWAT*HWATW / (COND*HZ) + TA(I-1J)*.5*(B-D)
2 + TA(I+1,J) *.5*(B+D) + TA(IJ+1)*C + E)

C THE PREVIOUS TWO EQUATIONS COVER AREAS 1,2,3
GO TO 12

C THE FOLLOWIKf IF STATEMENTS CHECK FOR NODES IN ROW 15,THE ADIABATIC WALL

14 IF (J-15)22,21#21
21 IF ( I-1) 23,23,24

C FOLLOWING FORMULA FOR AREA 6

23 TB(IJ) = 2.*A* ( TA(I*J)*(*5/A - C - 2.*B)
1 + TA(I#J-1) * C + TA(I+19J) * 2. * 8 +E)
GO TO 12

C THE FOLLOWING FORMULA FOR AREA 10
24 IF(I-MC)2419242,2*2

242 TB(IJ) = A*(TA(I#J)*(1./A - F*8*2. - C*2.)+ TA(I-19J)*F*B*2e
1 + TA(I#J-1) * C * 2. + 2., *E)
GO TO 12

C FOLLOWING FORMULA FOR AREA 7
241 TB(IJ) = 2.*A*( TAiIJ)*(.5/A - B - C ) + TA(I+1#J)*.5*(B+D)

1 +TA(I-1J) *.5*(B-D) + TA(I#J-1) * C + E)
GO TO 12

22 IF ( I - 1 ) 25,25926
C FOLLOWING FORMULA FOR AREA 4

25 TB(IsJ) = A * ( TA(IJ)* (1./A - ?.*C - 4.*8) + TA(IJ-1)*C
1 + TA(I.J+1) ' C + TA(I+19J)*4.*B +2.*E)
GO TO 12

26 IF(I-MC)2619262,262
C FOLLOWING EQUATION FOR AREA 9

262 TB(IJ) = 2.*A*(TA(IJ)*(.5/A -F * B - C ) + F*B*TA(I-1#J)
1 + .5*C*TA(I#J+1) + .5*C*TA(ItJ-1) + E
GO TO 12

C THE FOLLOWING FORMULA FOR ALL INTERNAL NODES
261 TB(IJ) = A* (TA(IJ) * (1./A - 2.*C - 2.*B) + TA(IJ+1)*C

1 + TA(I-19J)*(B-D) + TA(I+1,J)* (B+D) + TA(IJ-1)*C +2.*E)
12 CONTINUE
11 CONTINUE

C THE AVERAGE TEMPERATURE OF 1OUR IDES ABOUT (0.0)
L=L+1
IF(L-15)32931,32

31 TAV(K) = (TA(19l)+ TA(1*2) + TA(2,1) + TA(2,21 ) / 4.
WRITE(IP927) TIMES(K),TAV(K), (TB(Isl)#l=1,15), (TB(1J), J=115)

27 FORMAT(lX#'ELAPSED TIME='sF7.39'MSECSf94X,'THE MEAN TEMP9TAV='q

1F7.2/1XITB(I,1)',I1X,15F7.2/1X.ITB(1,J)* 1Xl5F7.2//)'
L=0

32 DO 30 J=115
DO 30 I =1MC

30 TA(tJ) = TB(I9J)
10 CONTINUE

IF(Z)1111,1111,112
1111 GO TO 111
300 CALL EXIT

TYPICAL DATA

C FIRST .CARD IS A MACHINE INSTRUCTION

.002

.172
2

1 2.82 20
10.3
150. 66. 27.7 3.58 .52 .047 .052 178.
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Appendix D

MOVIE TITLES AND DESCRIPTION

The titles for the 20-minute forced-convection movie

taken during this study and presently on file in the M.I.T. Heat

Transfer Laboratory are listed below.

Title No. Caption

1 Slug Flow and Subcooled Burnout

2 M.P. Fiori
A.E. Bergles
Heat Transfer Laboratory
Massachusetts Institute of Technology
1967-1968

3 Test Conditions
Vertical Upflow of Water In An Annular Test Section
0.546 in. o.d. (glass)
0.312 in. o.d. (heated test section)
DC Resistance Heating of Inner 304 SS Tube

4 Heat Flux = 1.12 x 106Btu/hr-ft 2

Flow Rate = 918 lbm/hr
Exit Subcooling = 113 0F
Pressure = 40 Psia
Precent of CHF = 85 percent

5 Camera Speed
1200 Frames Per Sec

6 Heat Flux = 1.65 x 10 6Btu/hr-ft 2

Flow Rate.= 1040 lbm/hr
Exit Subcooling = 101 0F
Pressure = 49 Psia
Percent of CHF = 98 percent

7 Camera Speed
1500 Frames Per Sec

8 Heat Flux = 939 x 10 6Btu/hr-ft 2

Flow Rate = 614 lbm/hr
Exit Subcooling = 830F
Pressure = 29 Psia
Percent of CHF = 85 percent
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Title No. Caption

9 Camera Speed
1500 Frames Per Sec

10 Heat Flux = 1.57 x 106 Btu/hr-ft2

Flow Rate = 918 lbm/hr
Exit Subcooling = 121OF
Pressure = 88 Psia
Percent of CHF = 92 percent

11 Camera Speed
1300 Frames Per Sec

12 Heat Flux = 1.12 x 10 6Btu/hr-ft2

Flow Rate = 918 lbm/hr
Exit Subcooling = 750F
Pressure = 37 Psia
Percent of CHF = 92 percent

13 Camera Speed
1300 Frames Per Sec

14 Heat Flux = 1.665 x 106Btu/hr-ft 2

Flow Rate = 1040 lbm/hr
Exit Subcooling = 101 0F
Pressure = 40 Psia
Percent of CHF = 100 percent

15 Camera Speed
1300 Frames Per Sec

16 Blue Flash Results From Current Arcing As Test Section
Melts and Breaks the Circuit

17 Conclusions
1. Slug Flow Exists at Subcooled Burnout

18 2. Nucleation Exists in the Liquid Film Under the Bubble

19 3. The Film is Broken by a Nucleating Bubble Causing a
Dry Spot, Surface Overheating and Burnout

20 The End

A short descriptive paper accompanies the film. This paper is

reproduced on the next two pages.
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Description of 16 mm Fastax movie titled "Slug Flow and

Subcooled Burnout"

This movie was made in the Heat Transfer Laboratory at M.I.T.

using a Fastax movie camera. The movies were part of a thorough

examination of the physical conditions existing at CHF. The

results of the entire research effort are presented in Fiori, M.P.,

"Model of Critical Heat Flux in Subcooled Flow Boiling", PhD Thesis,

M.I.T., September 1968.

The first film, test T-16, only part of which is included in

this movie, was taken in order to show that slug flow existed upstream

of the test section exit. The length of the test section photographed

is twice that of the other runs. The conclusions are that at only

85% of CHF, slug flow exists along the greater part of the heated

tube length.

The second film, Test T-14, slightly dark, clearly shows slug

flow and momentary flow stoppage which results from the flow rather

than system characteristics. The orange or discolored metal at the

exit is the copper shorting tube silver-soldered onto the stainless

steel.

The third film, Test T-13, again at high subcoolings, shows

a similar flow situation, i.e., extremely high void fractions at

high subcoolings (83 0 F for T-13).

ININ11''
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The fourth film, Test T-2, shows the first successful movie

run. The yardstick, missing here, was added for all the following

tests. Flow stoppage and instability is noted. The exit plenum

design, causing a 90 degree change of flow, was suspected of

causing these instabilities. The redesigned straight-through-

flow exit plenum showed that the momentary reversal was inherent

with slug flow.

The fifth film, Test T-17, was taken for relatively low

subcooling (750 F). The very high void fraction is obvious.

The final film, Test T-15, is the only film actually show-

ing the destruction of the test section. The critical condition

has already passed and the heated wall already is covered by

the insulating vapor. Note that the flow regime is not appreciably

altered. The blue flash results from the circuit breaking

a current of nearly 1400 amperes.



Test P
(psia)

1 21.5

2 40.5

3 43.5

4 33.7

5 47.7

6 37.4

7 67

8 68

9 73

10 74

11 67

TABLE E-1

ANNULAR FLOW REGIME TESTS

O.D. of Heated Section = 0.312 in.

(q/A) cr G ATsub
-6 2 -6 2

x 10 Btu/hr-ft x 10 ibm/hr-ft *F

.564 .4 42

1.30 1.1 110

1.37 1.1 90

.891 .7 71

1.17 .91 126

1.08 .91 93

1.86 1.25 95

1.37 1.0 111

1.69 1.25 99

2.02 1.25 87

1.63 1.08 84

L
in.

8-7/8

9-3/4

9-3/4

9-13/32

8-11/32

7-1/16

10

10

10

10

10

Annular
Gap
in.

0.091

0.091

0.091

0.091

0.091

0.091

0.102

0.102

0.102

0.102

0.102

Purpose and
Comments

Microflash
(Polaroid)
Photo of
flow in
glass
annulus
at CHF

Black and
white Fas-
tax movie

:j %D.
o 91

M~ .'

Video tape
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Variables

L/D

30

30

15

30

TABLE E-2

for Tube

D
in.

0.242

0.242

0.094

0.094

Flow

The data listed below are for those tube flow

tests) which were continued to the CHF condition.

Regime Studies

P G x 10- 6
e

sia lbm/hr-ft 2

90 .7 - 3.4

40 .5 - 3.4

30 1.12 - 6.72

30 1.12 - 6.72

regime tests (F series

G x 10 6

(lbm/hr-ft2

1.5

3.4

2.5

3.0

3.69

2.24

6.72

(q/A) crx10 6

(Btu/hr-ft2)

1.75

3.23

2.76

3.21

3.58

4.06

7.03

ATsub D

*F in.

66 0.242

88 0.242

111 0.242

105 0.242

63 0.094

67 0.094

116 0.094

L/D Flow Regime
at CHF

30 SLUG

30 SLUG

30 FROTH

30 FROTH

30 FROTH

15 FROTH

15 FROTH

Range of

Fig.

15

16

17

18

Test

1

2

3

4

5

6

7

P
(psia)

42

53

92

87

28

29

29
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TABLE E-3

Data of Wall Thermocouple Tests

The P-series tests were conducted to photographically examine

the flow regimes and simultaneously record the wall surface temperatures.

Only those q/A's with asterick are at CHF. The q/A was normally increased

only until slug flow was shown to exist. A Contaflex 35 mm camera was

used.

DIMENSIONS:
L = 10.0 in. O.D. = 0.312 in.

q/A x 10-6

Btu/hr-ft 2

1.18

1.30

1.02

1.50

1.47

.936

1.08

1.34

1.16

*
1.33

1.53

1.1

1.27

G x 10-6

lbm/hr-ft 2

.88

.88

.59

1.0

.88

.59

.59

.88

.88

1.0

1.0

.59

.88

Gap = 0.112 in.

AH b

Btu/lbm

120

105

91

92

90

88

108'

116

106

99

107

43

80

Comments

Photo I
in Fig. 26
Photo II
in Fig. 26
Photo III
in Fig. 27

Photo IV
& V, Fig.27

** See Figs. 28 and 29 for CHF Wall Temperature Trace

Test

P1

P2

P3

P4

P5

P6

P7

P8

P9

Plo

Pill

P12"

P13

P
psia

38

35

39

35

40

32

58

51

33

32

48

29

35
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TABLE E-3 CONT.

The T-series tests were those using the wall thermocouple instru-

mentation simultaneouslv with Fastax movies or with the flow regime

probe. Only those tests continued to CHF are recorded here.

DIMENSIONS: L = 10 in.,O.D. = 0.312 in.,

Tube of Annulus as Noted

Gap Between Inner and Outer

(q/A) crxlU

itu/hr-ft2

1.b33

1.71

1.289

1.27

1.24

1.13

1.665

1.12

1.12

G x 10

lbm/hr-ft 2

1.08

1.08

.75

.75

.75

.75

1.27

.88

.88

ATsub
0F

103

121

85

96

49

84

101

113

75

Annular
Gap
in.

0.095

0.095

0.102

0.102

0.091

0.091

0.091

0.112

0.112

Comments

1st Color
movie

Flow regime
probe

Flow regime
probe

Movie shows CHF phenomenon. See Figs. 32 and 34 for temperature trace.

P
psia

61

87

49

58

29

36

49

35

33.5

Test

Tl

T2

T4

T5

T6

Tll

T15

T16

T17

*
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Computer
Input

BRAD

IDIV

HLEN

MC

ALPHA

COND

FREQ

TIN

P

QONA

SFRAC

RIN

ROUT

W

ATrise
(*F)
(1 cycle)

1

0.002

1

10.0

30

0.172

10.3

35

71

40.0

1.665

0.52

0.121

0.156

1040

37

Discussion of Computer Runs

Run 1 The input data was from the CHF test shown in Fig. 32 and the
results are shown in Fig. 34. Good agreement with actual temperature
is noted.

Run 2 Similar input as Run 1 but different dry spot size. The dra-
matic change of ATrise indicates that bubble size is an important
variable.

MIN

2

0.006

3

10.0

30

0.172

10.3

35

71

40.0

1.665

0.52

0.121

0.156

1040

76

TABLE E-4

Table of Computer Runs

3 4

0.006 0.004

3 2

10.0 10.0

30 20

0.172 2.074

10.3 68.0

10 34

68 71

28.8 40

1.100 1.665

0.25 0.52

0.121 0.121

0.156 0.156

614 1040

61 9

5

0.002

1

2.82

20

0.172

10.3

150

66

27.7

3.58

0.52

0.047

0.060

178

67

6

0.002

1

2.82

20

0.172

10.3

150

66

27.7

3.58

0.52

0.047

0.052

178

70
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Run 3 The input data was from the CHF test shown in Fig. 28 and the
results are shown in Fig. 29. Good agreement with actual temperature
is noted.

Run 4 This run shows the important effect of metal properties
on AT rise . Note that AT . is only 9*F instead of 37*F for Run 1.

Run 5 Runs 5 and 6 were designed to show the diameter effect. The
data is for CHF Test No.5, Table E-2. Since no wall temperature mea-
surements were made for tube flow, the frequency for froth flow was
assumed.

Run 6 For the same data with a smaller wall thickness (0.008 in.less)
AT rise is a few degrees higher than for the thicker walled tube. This

indicates that the temperature variation resulting from different tube
wall thicknesses, is consistent with the proposed model.
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TABLE E-5

CHF DATA FOR TUBE WALL THICKNESS EXPERIMENTS

I.D. 0.094 in.

G x 10-6 P
lbm/hr-ft psia

3.0 30.5

3.0 88

4.5 31

4.5 90

3.3 38

1.5 35

1.5 29

3.0 29

4.5 28

4.5 89

3.0 89

1.5 92

L/D = 30

(q/A) crx 10-6

Btu/hr-ft 2

3.76

4.1

4.41

5.46

3.98

2.70

1.73

3.04

3.66

5.20

3.96

2.58

Test

1

2

3

4

5

6

7

8

9

10

11

12

AH b

Btu/sbm

20.7

62.8

53.5

93.3

42.0

38.0

28.0

49

67.8

99.0

81.6

37

t
in.

0.078

0.078

0.078

0.078

0.078

0.078

0.012

0.012

0.012

0.012

0.012

0.012

w



TABLE E-6

PHOTOGRAPHIC STUDY

Phase Purpose

1. Establish flow regime
at CHF

2. Flow regime study in
boundary layer

3. Black and white Fastax
Movies

4. Possibility of using
video tape for analy-
tical work

5. Colored movies for con-
firmation of relation-
ship of flow regime and
wall thermocouple

6. 35 mm camera for still
picture confirmation of
flow regime and wall
thermocouple

7. Flow regime study of
M.I.T. data points

Test Section

Glass Annulus

Metal Annulus

Glass Annulus

Glass Annulus

Glass Annulus

Glass Annulus

Straight Tube

Photographic Equipment

Microflash and Polaroid Camera

Techtronix 502
Oscilloscope and camera

Fastax camera, no oscillograph
recorder

TV - Ampex Model VR 7100

Video tape system

Fastax camera - oscillograph

recorder

Microflash and Contaflex 3
camera with oscillograph recor-
der

Techtronix Storage Scope Model 564
and camera
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10I

NUCLEATE
BOILING

4
SATURAT E D
BOILING FOI
DIAMETER

NATURAL CONVECTION

103-
I 10 102

(T, - T)

FIG. 1 BOILING CURVE FOR WATER UNDER SUBCOOLED
FORCED-CONVECTION CONDITIONS

CIA ,
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I J I I 1 I-
REF. Gxio 6
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[31
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D
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16.0

12.0

8.0

4.0

0

24.0

20.0

16.0

12.0

8.0

4.0

16.0

12.0

8.0

4.0

00 200 300 400
AHsub (Btu/Ibm)

500 600

FIG. 3 EFFECT OF MASS VELOCITY ON CHF AT HIGH PRESSURES

P= 2200 psia

D=0079in L/D>10
-- a + G=369xi0 lbm/ft

2
hr

o 7.38 X 106
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o 22.14 x 10
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FIG. 5 EFFECT OF TUBE DIAMETER ON CHF
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CONTROL VOLUME

SUBCOOLED WATER

WATER

= (q/A) b - (q/A) c

= (q/A) a + (q/A) c

= (q/A) 1 + (q/A) 2

= CPv 1Hfg vv C2 C p1 AT sub V 1

= Latent Heat + Sensible Heat

Constants

= Critical Vapor

and Liquid Velocities, Respectively

FIG. 7 SIMPLIFIED SCHEMATIC OF CHANG'S CHF MODEL

(q/A) 
1

(q/A) 2

(q/A) cr

C,2C 
=,s *

vv i
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FLOW

J_(q/A)c(2) SINGLE-PHASE CORE

TWO-PHASE
WALL LAYER

(q/A)b(1) (q/A)c (q/A)cVt) (q/ b

(q/A)c(2) (the convective heat flux from the outer portion of

the two phase wall layer to the turbulent core) = (q/A)b(1) (the

heat flux due to vaporization of liquid at the inner portion of the

wall layer and condensation at the outer portion) + (q/A) c(1)

(the convective heat transport through the liquid between the bubbles)

= (q/A)b (the heat flux from the surface beneath the bubbles) +

(q/A) c (the convective heat flux from the surface between the bubbles

at any instant)

FIG. 8 BANKOFF'S SEQUENTIAL RATE PROCESS MODEL OF CHF

FLOW

SUBCOOLED CORE

b BUBBLE LAYER

PV H- PVH(z) PVH+- (PVH)dz

(q/A)

d z SUPERHEATED LIQUID LAYER
WITH MICROSCOPIC SIZED
BUBBLES

The superheat of the superheated layer and the local heat flux determine

the temperature of the wall and thus critical heat flux conditions.

FIG. 9 TONG'S MODEL OF CHF UNDER SUBCOOLED CONDITIONS
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FIG. 10 PHOTOGRAPHS OF THE FLOW STRUCTURE
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q/A

G

P

AHsub

PHOTO VI

= 1.626 x 106 Btu/hr-ft2

= 1. x 106 lbm/hr-ft2

= 67 psia

= 85.9 Btu/lbm

PHOTO VII

Same Conditions Approximately

.1 Sec Later

FIG. 11 CHF AS VIEWED ON VIDEO TAPE
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0.05
Time - see

PHOTO I

FORCED CONVECTION WATER
ZERO POWER

0 0.05

PHOTO II

P ~ 45 psia, G = 1.5 x 106 lbm/hr-ft2
T. = 60 'F, X = -13.4 %
in

BUBBLY FLOW

0.05 0.05

PHOTO III

P'- 88, G = 1.0 x 10 6, Ti = 69, X = -10.4

BUBBLY TO SLUG TRANSITION

2

0

PHOTO IV

P - 76, G = 1.0 x 10
6
, Ti = 71, X = -7.13

SLUG FLOW

PHOTO V

P ~ 82, G = 1.0 x 10 6, Tin = 71, X = -7.49

SLUG FLOW

FIG. 13 FLOW REGIMES OBSERVED BY THE ELECTRICAL
RESISTANCE PROBE
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Time - sec

P = 91, G = 1.0 x

PHOTO VI

10 6, T = 71, X = -8.62

SLUG FLOW

P = 45, G = 3.4

0.05 0.1

PHOTO VIII

P = 53, G = 3.4 x 10
6
, Tin = 78, X = -10.3

FROTH FLOW

PHOTO IX

P = 53, G = 3.4 x 106 , Tin = 82, X = -9.94

FIG. 14 FLOW REGIMES OBSERVED BY THE ELECTRICAL
RESISTANCE PROBE

PHOTO VII
6

x 10 , T n =

BUBBLY FLOW

62, X = -18.7
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PHOTO I

Slug Flow

0.011 in. from wall

60 psia 6 2
1.25 x 10 lbm/hr-ft
96 *F

-12.4 %

PHOTO II

Slug Flow

Probe 0.0015 in.

from wall

PHOTO III

Bubbly Flow

Probe 0.001 in.

from wall at CHF

X = -12.36 %

0.05
Time - sec

FIG. 22 EXAMINATION OF FLOW STRUCTURE IN SUPERHEATED LIQUID FILM
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FLO T (POSITION A)

t(2)

(3) 3

(4)
4

(5)

(6) 6

TMAX- T, = ATrise = ATquench

FIG. 24 SCHEMATIC RELATING FLOW MODEL AND SURFACE
TEMPERATURE VARIATION
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FIG. 25 ILLUSTRATION OF CHF PHENOMENON
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q/A = 1. 34 x 106 Btu/hr-ft 2

G= 0.88 x 106 lbm/hr-ft 2

P 51 psia

ATsub =116*F

FLOW

-O

-2 in.

- n.

-0

PHOTO Il

q/A = 1.04 x 10 6 Btu/hr-ft 2
G =0.59 x10 lbm/hr-ft
P = 59 psio
ATsub = 115 *F

FLOW

FIG. 26 MICROFLASH PHOTOS WITH SIMULTANEOUS TEMPERATURE TRACES
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6 210 Btu/hr-ft
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2
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1 FLOW

-0

PHOTO :IT

q/A=0.96 x 106 Btu/hr-ft2
G = 0. 59 x 106 Ibm/hr-ft 2

P = 30 psia
A Tsub = 62*F

PHOTO Y

q/A = I x 106 Btu/hr-ft 2

G =0. 59 x 106 Ibm/hr-ft 2

P= 30 psia

A Tsub = 56 *F
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DESTRUCTION -

DESTRUCTION
OF SECTION
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_LIZI
BOILING (q/A)cr = I.1OXIO Btu / hr-ft2

G =0.59x10 6 Ibm/hr-ft 2

Pe= 29 psio

ATsub = 43*F

SIGNAL USED FOR
PHOTOGRAPHIC

PURPOSES

QUENCHING SLUG

REFEREC GP290NT

VAPOR CLOT
AND

DRY SPOT

AMPLiFIED

UNAMPLIFIED
SIGNAL

VOLTAGE
-ACROSS TEST

SECTION

I K.
I I

POWER INCREASED
4 SECONDS

EARLIER

FIG. 28 SURFACE TEMPERATURE TRACE AT CHF (TEST P-12)

mi



L TRACE OF CHF TEST (FIG.28)

I.

4

IL

2 400-
w10'

I--

w COMPUTER
CALCULATION

350

0 0.1 0.2 0.3 0.4 0.5 0.6

TIME- sec

FIG. 29 EXPANDED SCALE SHOWING SURFACE TEMPERATURE VARIATION AT CHF (TEST P-12)
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FIG. 30 CAMERA SPEED AND NUMBER OF FiLM FRAMES AS A FUNCTION OF ELAPSED TIME
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FIG. 31 WALL TEMPERATURE TRACE FOR MOVIE RUN
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0
0a-
Q.
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21.5 cz

4

0z
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w
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20.0

RUN T-15

19.5

FIG. 32 WALL TEMPERATURE TRACE AT CHF DURING MOVIE RUN



TWO PIN-HOLES

NOTE PIN-HOLE IN
METAL BLOWN OUT

PIN-HOLES IN
FRACTURED TEST SECTION

FRACTURED TEST SECTION

FIG. 33 PIN-HOLES OBSERVED IN DESTROYED TEST SECTIONS
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FIG. 34 CALCULATED TEMPERATURE VARIATION AT CHF DURING MOVIE RUN
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FIG. 43 GENERALIZED VOID FRACTION PREDICTION FOR FORCED-CONVECTION BOILING IN TUBES
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FIG. 46 MODIFIED EXIT PLENUM FOR ANNULAR TEST SECTION
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FIG. 52 ELECTRICAL-RESISTANCE-PROBE ASSEMBLY FOR TUBULAR TEST SECTIONS
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ERRATA

Page 43, line 3, change "were" to "was"

Page 44, line 14, correct spelling to "combination"

Page 50, line 4, add period at end of sentence

Page 52, line 12, correct spelling to "contradictory"

Page 97, line 6, should read,"Runs 5 and 6 were designed to show

the wall thickness effect. The"

Page 101,Fig. 2, In symbol table under AT sub change 440 to 44

Page 151, Fig.57, On ordinate of figure change h to h
q s


