900 research outputs found

    Hard sphere-like dynamics in a non hard sphere liquid

    Full text link
    The collective dynamics of liquid Gallium close to the melting point has been studied using Inelastic X-ray Scattering to probe lengthscales smaller than the size of the first coordination shell. %(momentum transfers, QQ, >>15 nm−1^{-1}). Although the structural properties of this partially covalent liquid strongly deviate from a simple hard-sphere model, the dynamics, as reflected in the quasi-elastic scattering, are beautifully described within the framework of the extended heat mode approximation of Enskog's kinetic theory, analytically derived for a hard spheres system. The present work demonstrates the applicability of Enskog's theory to non hard- sphere and non simple liquids.Comment: 5 pages, 2 figures, accepted in Phys. Rev. Let

    On the origin of the λ\lambda-transition in liquid Sulphur

    Full text link
    Developing a novel experimental technique, we applied photon correlation spectroscopy using infrared radiation in liquid Sulphur around TλT_\lambda, i.e. in the temperature range where an abrupt increase in viscosity by four orders of magnitude is observed upon heating within few degrees. This allowed us - overcoming photo-induced and absorption effects at visible wavelengths - to reveal a chain relaxation process with characteristic time in the ms range. These results do rehabilitate the validity of the Maxwell relation in Sulphur from an apparent failure, allowing rationalizing the mechanical and thermodynamic behavior of this system within a viscoelastic scenario.Comment: 5 pages, 4 eps figures, accepted in Phys. Rev. Let

    Tunneling of polarized fermions in 3D double wells

    Full text link
    We study the tunneling of a spin polarized Fermi gas in a three-dimensional double well potential, focusing on the time dynamics starting from an initial state in which there is an imbalance in the number of particles in the two wells. Although fermions in different doublets of the double well tunnel with different frequencies, we point out that (incoherent) oscillations of a large number of particles can arise, as a consequence of the presence of transverse degrees of freedom. Estimates of the doublet structure and of the occupation of transverse eigenstates for a realistic experimental setup are provided.Comment: 10 pages, Typos corrected and figures changed - published in Laser Physics, issue on the LPHYS'11 conference (Sarajevo, 2011

    Quantum quench dynamics of the sine-Gordon model in some solvable limits

    Get PDF
    In connection with the the thermalization problem in isolated quantum systems, we investigate the dynamics following a quantum quench of the sine-Gordon model in the Luther-Emery and the semiclassical limits. We consider the quench from the gapped to the gapless phase as well as reversed one. By obtaining analytic expressions for the one and two-point correlation functions of the order parameter operator at zero-temperature, the manifestations of integrability in the absence of thermalization in the sine-Gordon model are studied. It is thus shown that correlations in the long time regime after the quench are well described by a generalized Gibbs ensemble. We also consider the case where the system is initially in contact with a reservoir at finite temperature. The possible relevance of our results to current and future experiments with ultracold atomic systems is also critically considered.Comment: 21 pages, no figures. To appear in New J. Phys

    Microscopic dynamics and relaxation processes in liquid Hydrogen Fluoride

    Full text link
    Inelastic x-ray scattering and Brillouin light scattering measurements of the dynamic structure factor of liquid hydrogen fluoride have been performed in the temperature rangeT=214÷283K T=214\div 283 K. The data, analysed using a viscoelastic model with a two timescale memory function, show a positive dispersion of the sound velocity c(Q)c(Q) between the low frequency value c0(Q)c_0(Q) and the high frequency value c∞α(Q)c_{\infty \alpha}(Q). This finding confirms the existence of a structural (α\alpha) relaxation directly related to the dynamical organization of the hydrogen bonds network of the system. The activation energy EaE_a of the process has been extracted by the analysis of the temperature behavior of the relaxation time τα(T)\tau_\alpha(T) that follows an Arrhenius law. The obtained value for EaE_a, when compared with that observed in another hydrogen bond liquid as water, suggests that the main parameter governing the α\alpha-relaxation process is the number of the hydrogen bonds per molecule.Comment: 9 pages and 12 figure

    One-dimensional fermionic systems after interaction quenches and their description by bosonic field theories

    Full text link
    We show that the dynamics of quenches in one dimension far off equilibrium can be described by power laws, but with exponents differing from the fully renormalized ones at lowest energies. Instead they depend on the initial state and its excitation energy. Furthermore, we found that for quenches to strong interactions unexpected similarities between systems in one and in infinite dimensions occur, indicating the dominance of local processes.Comment: This is a distinctly revised version which is focussed on the description of the dynamics by bosonization technique

    Remarks on the notion of quantum integrability

    Full text link
    We discuss the notion of integrability in quantum mechanics. Starting from a review of some definitions commonly used in the literature, we propose a different set of criteria, leading to a classification of models in terms of different integrability classes. We end by highlighting some of the expected physical properties associated to models fulfilling the proposed criteria.Comment: 22 pages, no figures, Proceedings of Statphys 2

    Zamolodchikov-Faddeev Algebra and Quantum Quenches in Integrable Field Theories

    Get PDF
    We analyze quantum quenches in integrable models and in particular the determination of the initial state in the basis of eigenstates of the post-quench hamiltonian. This leads us to consider the set of transformations of creation and annihilation operators that respect the Zamolodchikov-Faddeev algebra satisfied by integrable models. We establish that the Bogoliubov transformations hold only in the case of quantum quenches in free theories. In the most general case of interacting theories, we identify two classes of transformations. The first class induces a change in the S-matrix of the theory but not of its ground state, whereas the second class results in a "dressing" of the operators. As examples of our approach we consider the transformations associated with a change of the interaction in the Sinh-Gordon and the Lieb-Liniger model.Comment: v2: published version (typos corrected
    • …
    corecore