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1. Introduction

A quantum quench is an instantaneous change in the parameters that determine the
dynamics of an isolated quantum system, e.g. the masses or coupling constants of its
Hamiltonian. This topic has recently attracted a lot of attention as shown by the
increasing number of papers addressing this issue (for a recent review, see [1] and references
therein). From an experimental point of view this is a feasible way to bring the system
out of equilibrium and study its evolution under the quantum mechanical natural laws,
in isolation from the environment. In particular, the scientific interest in quantum
quenches started growing after the experimental realization of global sudden changes
of the interaction in cold atom systems, a novel technology where quantum statistical
physics can be experimentally demonstrated and probed [2]–[5]. From a theoretical point
of view the problem consists in preparing the system in a particular trial state, which
is typically the ground state of some Hamiltonian, and studying its evolution under a
different Hamiltonian [6]–[17]. Apart from providing one of the simplest and most well-
posed ways to study out-of-equilibrium quantum physics, quantum quenches also give
rise to a fundamental long-standing open question of central importance in statistical
physics, the question of thermalization: how do extended quantum physical systems tend
to thermal equilibrium starting from an arbitrary initial state?
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Of particular interest is the case of (1 + 1) dimensions where a discrimination
between integrable and non-integrable systems is possible. Integrable models are models
that exhibit factorization of the scattering matrix and can be solved exactly (see, for
instance [18], and references therein). Their classical counterparts possess as many
integrals of motion as they have degrees of freedom and this fact prevents thermalization
of an arbitrary initial state, as not all of the microstates of equal energy respect the
conservation of all other integrals of motion. This property is also expected to hold at the
quantum level. In a seminal experiment [5] it was observed that a trapped (1 + 1)D Bose
gas, initially prepared in a non-equilibrium state, does not thermalize but tends instead
to a nonthermal momentum distribution. The absence of thermalization suggests as a
possible reason the integrability of the system which approximates a homogeneous (1+1)D
Bose gas with point-like collisional interactions, a typical integrable model, even though
the confining potential used in the experiment breaks the homogeneity and therefore
integrability of the system. This experiment triggered an intensive discussion about
the role of non-integrability in the thermalization process. It was soon conjectured [19]
that in an integrable case the system does exhibit stationary behavior for long times,
described however not by the usual Gibbs ensemble but by a generalized Gibbs ensemble
(GGE) where new Lagrange multipliers are introduced into the density matrix, one for
each integral of motion, for accounting for their conservation (in the same way that the
inverse temperature β is the Lagrange multiplier corresponding to the constraint of energy
conservation):

ρ = Z−1 exp

(
−
∑
m

λmIm

)
. (1)

This conjecture has been shown to be correct in many different special cases, by both
analytical and numerical methods [17], [20]–[26]. On the other hand, it has not yet
become clear whether non-integrability alone is sufficient to ensure thermalization or
not [27, 28]; neither has exact thermalization been firmly demonstrated as an outcome
of unitary evolution. For instance, recent analysis suggests that the behavior may be
more complicated and may depend on the initial state, finite size effects and locality [29]–
[31]. For recent experimental developments backed by numerical simulations we refer the
reader to [32]–[34].

As regards the analytic approach to the problem, in the paper [24] it was shown that
any quantum quench in an integrable quantum field theory where the initial state has the
form

|ψ0〉 ∼ exp

(∫
dθ K(θ)Z†(θ)Z†(−θ)

)
|0〉, (2)

leads to stationary behavior as described by the GGE ansatz. In the expression above, |0〉
is the vacuum state of the theory, while Z†(θ) is the creation operator of the quasiparticle
excitation, which satisfies the relativistic dispersion relations E = m cosh θ, P = m sinh θ,
where θ labels the rapidity of the particle of mass m. As is clear from this expression, the
function K(θ) is the amplitude relative to the creation of a pair of particles with equal
and opposite rapidities.

The above form of a quench state is also called a ‘squeezed coherent’ state. The
reason for choosing such an initial state comes from its relation with boundary integrable
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states (i.e. boundary states that respect the integrability of the bulk theory) and from
the technical advantages that it exhibits. It is however true that this requirement is
satisfied in general for quantum quenches in a free theory, bosonic or fermionic, as well
as for the important cases of Dirichlet and Neumann states in integrable field theory.
These states are supposed to capture the universal behavior of all quantum quenches in
integrable models if renormalization group theory expectations are also applicable out of
equilibrium. They were successfully used earlier [11, 12], applying a Wick rotation from
real to imaginary time which allows a mapping of the original quantum quench problem to
an equilibrium boundary problem defined on a Euclidean slab with boundary conditions
both equal to the initial state right after the quench. Although this approach does not help
in determining the expression for the initial state as a function of the quench parameters,
it has led to correct predictions in certain important asymptotic limits.

It still remains to find out, from first principles, whether this assumption for the form
of the initial state holds in general for any quantum quench in an integrable system or, if
not, under what conditions this happens. Our method for attacking this problem begins by
obtaining an understanding of the fundamental reason for this condition holding generally
for free systems and then investigating whether this reason can be generalized to the
integrable case. It turns out that in free systems the reason lies in the fact that the relation
between the creation–annihilation operators before and after the quench is of linear
Bogoliubov type, which itself is a consequence of their canonical commutation or anti-
commutation relations. In integrable theories these commutation relations are replaced
by the so-called Zamolodchikov–Faddeev (ZF) algebra which, assuming for simplicity that
there is only one quasiparticle in the theory, can be written as

Z(θ1)Z(θ2) = S(θ1 − θ2)Z(θ2)Z(θ1)

Z(θ1)Z
†(θ2) = S(θ2 − θ1)Z

†(θ2)Z(θ1) + δ(θ1 − θ2).
(3)

Intuitively this means that the exchange of two quasiparticles is done by the scattering
matrix S(θ). Then a natural question arises: what are the possible transformations
of creation–annihilation operators that respect the above algebra? This is a question
of more general interest in both the abstract mathematical description of integrable
field theories and their potential physical applications in concrete models. In this
paper we show that, unlike in free theories, the ZF commutation relations do not
admit Bogoliubov transformations and we construct several other classes of non-trivial
infinitesimal transformations.

We start our presentation by first discussing the structure of initial states in global
quantum quenches. Then we outline a general strategy for determining the initial state
from the relation between the ZF creation–annihilation operators before and after the
quench and deriving the conditions that must be satisfied by infinitesimal transformations
of these operators in order to respect the ZF algebra. After showing that in interacting
theories the linear Bogoliubov transformations do not leave the ZF algebra invariant,
we find acceptable transformations of two types, the first of which induces a shift in
the S-matrix but does not affect the ground state of the theory, while the second
does not change the S-matrix but does change the ground state and the corresponding
transformed ground state is, under certain conditions, of the squeezed coherent state
form. We note that these are special classes of transformations and outline how more
general ones can be constructed. Next we apply these ideas in two typical integrable
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models, the sinh–Gordon model and the Lieb–Liniger model, deriving some examples of
infinitesimal transformations of their ZF operators that demonstrate the presence of the
first type constructed before. Finally we summarize our findings, giving directions for
their application to concrete quantum quench problems. There are also two appendices:
in appendix A we discuss the squeezed states in free quantum field theories while in
appendix B we discuss the derivation of the two classes of generators of the ZF algebra
transformations.

2. On the initial states in global quantum quenches

A quench process consists of preparing the system in a state |ψ0〉 that is not an eigenstate
of its Hamiltonian H and letting this state unitarily evolve according to H . At time t,
the expectation values of local observables Λ(r) are given by

〈Λ(t, r)〉 = 〈ψ0|eiHtΛ(r)e−iHt|ψ0〉, (4)

with similar expressions for higher point correlation functions. As is evident from the
expression above, important information on the subsequence dynamics of the system is
encoded in the initial state |ψ0〉. Relevant features of this state can be derived on the
basis of general considerations for extended quantum systems having particle excitations
and for global quenches. First of all, by relativistic (or even Galilean) invariance, we can
always assume that the quench state |ψ0〉 carries no momentum. Let Z†(p) be the creation
operator of a particle excitation5 of the system of momentum p and let us assume that
a basis of the Hilbert space is given by the multi-particle excitations, eigenvectors of the
Hamiltonian H . Then the general form of the initial state |ψ0〉 for a global quench is given
by an infinite superposition of multi-particle states of zero momentum:

|ψ0〉 =

∞∑
n=0

∫
dp1 · · ·dpn K̃n(p1, . . . , pn)δ

(
n∑

i=1

pi

)
Z†(p1) · · ·Z†(pn)|0〉, (5)

where |0〉 is the vacuum state of the system. This requirement is due to a thermodynamics
argument related to the formulation of quench dynamics in d dimensions to the
thermodynamics of a (d+1) dimensional field theory in a slab geometry, where the initial
state |ψ0〉 plays the role of boundary conditions on both borders of the slab [12]. In this
interpretation of the quench process, the quantity

Z0(τ) = 〈ψ0|e−τH |ψ0〉 ≡ e−F0(τ) (6)

plays the role of the partition function of the system with boundary conditions fixed by
|ψ0〉. For global quenches, the corresponding free energy F0(τ) must be an extensive
quantity, F0(τ) � V f0(τ), where V is the volume of the system. On the other hand, this
quantity can be computed by employing the expression (5) for the initial state |ψ0〉 and
a proper normalization6 of δ(0): then the only way to have an extensive behavior in the
volume V of the system for F0(τ) is by |ψ0〉 containing an infinite number of multi-particle
states.

5 To simplify the following formulas we assume that the system has only one neutral elementary excitation, with
normalization proportional to the δ function, 〈Z(p1)Z

†(p2)〉 ∝ δ(p1 − p2).
6 See [35] for an explicit regularization of this term in the one-dimensional case.
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Notice that a way to automatically take into account the condition of zero momentum
of the initial state |ψ0〉 is to assume that its infinite superposition is made up of pairs of
particles of equal and opposite momentum, i.e. Cooper pairs:

|ψ0〉 =

∞∑
n=0

∫
dp1 · · ·dpnK2n(p1, . . . , pn)Z

†(−p1)Z
†(p1) · · ·Z†(−pn)Z†(pn)|0〉. (7)

It should be stressed, though, that this formula is a particular case of the more general
form (5). But even with this simplification, to specify the initial state |ψ0〉 one still needs
an infinite number of amplitudes K2n(p1, . . . , pn). The great technical advantage of the
squeezed coherent states, whose concise expression is given by

|ψ0〉 ∼ exp

(∫
dp K(p)Z†(p)Z†(−p)

)
|0〉, (8)

then becomes evident. In this case, in fact, all the multi-particle amplitudes
K2n(p1, . . . , pn) can be expressed in terms of products of the single amplitude K(p) entering
equation (8), therefore greatly simplifying the problem.

Squeezed coherent states naturally appear in two contexts: (i) in the purely boundary
integrable field theories considered by Ghoshal and Zamolodchikov [36], where the
amplitude K(p) also satisfies additional conditions (boundary unitarity and crossing
symmetry) and (ii) in quench processes in free theories, both bosonic and fermionic. In
the latter case, it is worth noticing that the commutation or anti-commutation relations
of the annihilation and creation operators Z(p) and Z†(p) of these theories can be
cast in the form of ZF algebra (3) with S = 1 for the boson and S = −1 for the
fermion. The only parameter entering these theories is in this case the mass of their
excitation and, as shown in detail in appendix A, its sudden change can be taken into
account by a Bogoliubov transformation of the annihilation and creation operators. Since
the Bogoliubov transformations leave the commutation or anti-commutation relations
invariant, in turn they can be seen as the transformations which leave invariant the ZF
algebra of free theories. This observation leads us to investigate a more general class of
transformations of the ZF operators in interacting integrable field theories which leave
their algebra invariant.

3. Quenches in integrable systems

In this section we analyze the quantum quenches in systems which are integrable before
and after the sudden change of one parameter Q, which can be for instance the mass
of the particle or the coupling constant of the theory. One of the main tasks of this
problem is to write down the pre-quench state (usually the vacuum, annihilated by the pre-
quench particle operators) in terms of the post-quench particle basis. This task involves
in principle the computation of an infinite number of inner products, an operation usually
difficult to fulfill (for a discussion of related numerical issues see for example [16, 37]).
Therefore, it would be useful to have a different approach. In principle, a possible way
to determine the initial state |ψ0〉 in terms of the post-quench creation–annihilation
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operators Z, Z† is to implement the following program:

• for an arbitrary value of the parameter Q, find initially the relation between the ZF
Z operators of the theory and the physical field operator φ, i.e. φ = f(Q; ZQ);

• use the continuity of the field as a boundary condition in the quench process Q0 → Q

f(Q0; ZQ0) = f(Q; ZQ) (9)

for deriving the relation between the old and the new ZF operators

ZQ0 = F (Q0, Q; ZQ) = f−1(Q0; f(Q; ZQ)); (10)

• write the initial state |Ω0〉, which is known in the pre-quench ZF basis (and is typically
the ground state defined by ZQ0|Ω0〉 = 0), in the new basis using the above relation.

If this program can be realized, the time evolution of the initial state in the new basis
can be computed easily. Going into more detail, the first step of this program consists in
expanding the physical field operator as a series in the ZF operators using all of its form
factors, i.e. the matrix elements of the field φ(x), in the asymptotic states. The second
step involves the inversion of this series; this might require an ingenious ansatz for the
function F . The third step requires us to deal with the most general expansion of a state
in the post-quench basis and to determine the coefficients of |Ω0〉 term by term from the
equation F (Q0, Q; ZQ)|Ω0〉 = 0.

While the first step is essentially a re-expression of the body of information obtained
by the form factors program, the other steps are in general highly non-trivial. In order
to partially circumvent these difficulties, in the following we will exploit some general
properties of integrable field theories. As previously stated, in free theories the relation
between the new and the old creation/annihilation operators is of Bogoliubov type, fixed
by the condition of leaving invariant the (trivial) ZF algebra of these theories. Analogously,
for generic integrable theories, the transformation between the pre-quench and the post-
quench ZF operators must respect the algebra. This leads us to investigate under which
conditions this requirement is satisfied. Of course this is quite an abstract point of
view: knowing that a certain transformation respects the algebra does not necessarily
clarify the physical nature of the quench protocol. Nevertheless, it is surely important to
understand what are the possible algebra-preserving transformations and whether their
form is restrictive enough for making predictions about the initial state. In section 4,
we integrate this analysis with a perturbative study of a typical integrable model, the
sinh–Gordon model, and its non-relativistic counterpart, i.e. the Lieb–Liniger model.

3.1. Conditions required for transformations of the ZF algebra operators

We are looking for transformations of the creation–annihilation operators Z, Z† that
respect the ZF algebra. We also require that the transformations respect the translational
invariance of the theory, since we are considering only homogeneous systems, both before
and after the quench. For this reason we will write the ZF algebra in a momentum
representation which, as we will see soon, better meets this requirement:

Zp1Zp2 = S(p1, p2)Zp2Zp1 (11)

Zp1Z
†
p2

= S(p2, p1)Z
†
p2

Zp1 + δ(p1 − p2), (12)
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along with the standard properties of the S-matrix

S(p1, p2)
−1 = S(p1, p2)

∗ = S(p2, p1) = S(−p1,−p2). (13)

Notice that in comparison with the form of the ZF algebra in the rapidity
representation (3), we have redefined7 the operators as Zp ≡ Z(p) = Z(θ(p))/

√
E(p)

since δ(θ(p)) = E(p)δ(p).
We focus our attention on infinitesimal transformations, assuming that a finite

transformation can be built up by repetitive action of the infinitesimal ones. We also
allow for infinitesimal changes of the S-matrix8. Since we demand that the transformations
commute with the momentum operator, the new operator must carry the same momentum
as the old one but not necessarily the same rapidity, as the quench may involve a change of
the mass of particles (this is why the momentum representation suits our problem better).
Therefore both the transformed operator and the S-matrix are in general expressed as

Z ′p = Zp + εWp (14)

S ′(p1, p2) = S(p1, p2) + εT (p1, p2) (15)

where ε is a small quantity, a function of the infinitesimal change δQ of the quench
parameter. In order to satisfy the ZF algebra, they must fulfil the conditions

Wp1Zp2 + Zp1Wp2 = T (p1, p2)Zp2Zp1 + S(p1, p2)(Zp2Wp1 + Wp2Zp1) (16)

Wp1Z
†
p2

+ Zp1W
†
p2

= T (p2, p1)Z
†
p2

Zp1 + S(p2, p1)(Z
†
p2

Wp1 + W †
p2

Zp1) (17)

for all values of p, p′, along with the following conditions for T :

T (p1, p2)
∗ = T (p2, p1) = T (−p1,−p2) = −T (p1, p2)S

−2(p1, p2) (18)

coming from the unitarity of the S-matrix.
The operator Wp can generally be written as an expansion in the operators Z, Z†:

Wp =

∞∑
n,m=1

δ

(
p +

n∑
i=0

qi −
m∑

j=0

pj

)
an,m({qi}, {pj})

n∏
i=0

Z†qi

m∏
j=0

Zpj
. (19)

The above conditions are then translated into a sequence of relations between the
coefficients an,m of different orders. Below we construct and study several simple classes
of solutions in which the above expansion terminates after a few terms.

7 This definition is also tailored to our purposes, since the energy of particles may change under a quantum quench
and we would like to absorb all changes into the transformation of the operators. In addition it is consistent with
the usual normalization of energy eigenstates in the free limit which will be useful later.
8 Note that this assumption may exclude the special case of free bosons. This is because for all integrable field
theories except for that for free bosons, the S-matrix at zero momentum is S(0) ≡ S(p, p) = −1. Therefore the
transition from a free bosonic point of an integrable theory to another point that does not correspond to free
bosons is always discontinuous as far as the S-matrix is concerned. In the following we sometimes make use of
the property S(0) = −1, in which case we mention it explicitly.
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3.2. A first trial: linear Bogoliubov transformations

Let us initially assume that W corresponds to a linear Bogoliubov transformation which,
in the infinitesimal form, means Wp = apZ

†
−p. In this case it is easy to see that the

previous conditions become

S(−p, p′) = S(p,−p′) = S(p′, p) ap/a−p = S(p, p) ≡ S(0) T (p, p′) = 0

for all values of p, p′. The first of these equations implies that S(p, p′)2 = 1, i.e. S(p, p′) =
±1. We therefore arrive at the interesting result that the linear Bogoliubov transformation
is a symmetry of the algebra only in the trivial case of free fields, bosons or fermions.
Moreover, it is easy to show that any other linear combination of the operators is
inconsistent with the general conditions (16) and (17).

3.3. Generators of S-matrix changes

We will now construct a transformation that induces a nonzero change T in the S-
matrix and show that this transformation is unique, in the sense that any infinitesimal
transformation that has the same effect must necessarily involve this one. First, observe
that, since linear transformations are already excluded, the TZZ term in (16) can only
be produced as a δ-function by-product of the commutation of higher order terms in W .
More precisely, W must be of third order and must contain one Z† operator and two Z
operators, so that the commutation of Wp with Zp′ produces a ZZδ term. Furthermore,
from equation (16) we see that the two Z operators in the residual ZZδ term, which come
originally from Wp, must carry momenta p, p′ (the same as for Wp and Zp′) and therefore
the Z† operator in Wp must carry momentum p′ to ensure that W ’s total momentum is

p. Thus Wp is of the form Z†p′Zp′Zp. But this must be true for arbitrary p′, so W should
necessarily consist of a linear combination of all such terms. All of this leads to the ansatz

Wp =

(∑
q

αp,qZ
†
qZq

)
Zp. (20)

Let us verify it explicitly by substituting into the required conditions (16) and (17), the
first of which gives

T (p1, p2) = S(p1, p2)(αp2,p1 − αp1,p2), (21)

while the second gives

T (p2, p1) = S(p2, p1)(α
∗
p2,p1

+ αp1,p2), (22)

together with

αp,q + α∗p,q = 0. (23)

Remarkably all of these requirements are simultaneously satisfied as long as condition (23)
holds, i.e. if the coefficients αp,q are purely imaginary. Hence, from now on we set
αp,q = iap,q where ap,q are real functions. Notice that this solution also ensures that
the S-matrix remains unitary, as expressed by the conditions (18) for T .
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Studying these transformations in more detail, one realizes that

Z ′†p Z ′p = Z†pZp + iεZ†p

[∑
q

(ap,q + a∗p,q)Z
†
qZq

]
Zp = Z†pZp, (24)

i.e. the conserved charges

Q̂s = qs

∫
dθ esθZ†θZθ (25)

remain invariant (unless the factors qs depend explicitly on the physical parameters whose
infinitesimal change leads to this transformation). This allows us to easily derive the
corresponding finite transformation9

Z ′p = P
{

exp

(
i

∫
Îp(s) ds

)}
Zp where Îp(s) =

∑
q

ap,q(s)Z
†
qZq (26)

which changes the S-matrix as follows:

S ′(p, q) = exp

[
i

∫
(aq,p(s)− ap,q(s)) ds

]
S(p, q). (27)

Even though we have constructed this infinitesimal transformation heuristically, it is
easy to show that this transformation is the only one that changes the S-matrix. Any
other transformation that changes the S-matrix must necessarily be a linear combination
of this one along with some other part that does not change it. Indeed if there was another
transformation W ′ that also shifted S to the same S + εT , then from (16) and (17) their
difference W − W ′ would not change the S-matrix. We can therefore decompose any
transformation that respects the ZF algebra (infinitesimal or finite) into two parts, one
of which is of the above form and performs the shift of the S-matrix to the desired value,
while the other leaves it invariant. In this way we have reduced the problem of finding
the symmetries of the ZF algebra to the task of identifying those transformations which
do not alter the S-matrix and which satisfy (16) and (17) with T = 0, i.e.

Wp1Zp2 + Zp1Wp2 = S(p1, p2)(Zp2Wp1 + Wp2Zp1) (28)

Wp1Z
†
p2

+ Zp1W
†
p2

= S(p2, p1)(Z
†
p2

Wp1 + W †
p2

Zp1). (29)

3.4. Other classes of transformations

Having reduced the problem to identifying the transformations of the ZF operator which
do not alter the S-matrix, we will now consider more general classes of symmetry
transformations of the ZF algebra. Let us assume initially that W is simply a single
product of Z, Z† operators. In order to check the condition (28), we have to consider how
Wp commutes with Zp′: when we swap Zp′ with each of the operators in W one by one,
this operation gives as output, for each of these terms, multiplicative S-matrix factors as
well as additive δ-functions for each Z†, which are lower order products. One obvious way

9 P{· · ·} denotes a path-ordering integration and s is a continuous parameter along some path.
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to satisfy (28) is then to choose Wp in such a way that (a) the overall S-matrix factor is
simply equal to S(p, p′) and (b) the residual lower order terms vanish.

Let us firstly focus our discussion on the point (a). We assume that Wp consists of
nZ† operators and mZ operators (in some ordering that is not relevant for the moment),
i.e.

Wp =
n∏

i=1

Z†qi

m∏
j=1

Zrj
with

m∑
j=1

rj −
n∑

i=1

qi = p. (30)

Then we have

WpZp′ �
(

n∏
i=1

S(p′, qi)
m∏

j=1

S(rj, p
′)

)
Zp′Wp, (31)

where we use the symbol � to denote equality for the highest order terms only (i.e. we
ignore for now all residual lower order terms). To satisfy (28) we then require that the
equation

n∏
i=1

S(p′, qi)

m∏
j=1

S(rj, p
′) = S(p, p′) (32)

holds10. In order to satisfy this relation for all p, p′ and also independently of the specific
functional form of the S-matrix, we have to exploit its general properties. In particular,
taking into account that S(p, p′) = S−1(p′, p) we see that if

m = n + 1 and qi = rj for all i = j = 1 · · ·n and rn+1 = p (33)

then equation (32) becomes an identity.
As for the second condition (29), we have

WpZ
†
p′ �

(
n∏

i=1

S(qi, p
′)

m∏
j=1

S(p′, rj)

)
Z†p′Wp , (34)

and

ZpW
†
p′ �

(
m∏

j=1

S(r′j , p)
n∏

i=1

S(p, q′i)

)
W †

p′Zp, (35)

and so we would similarly require
n∏

i=1

S(qi, p
′)

m∏
j=1

S(p′, rj) =

m∏
j=1

S(r′j, p)

n∏
i=1

S(p, q′i) = S(p′, p). (36)

Remarkably this condition is essentially identical to that of equation (32), i.e. our
solution (33) of (32) automatically satisfies this one too. Hence, there exists a solution to
these equations for arbitrarily high order n + m.

However this is not the end of the story, since one has also to check the point (b),
namely that the residual terms vanish. In order to ensure this condition for all p, p′,

10 Of course this is not the only way to meet the condition (28) under (30) but, as the more detailed discussion
presented in appendix B shows, the other options lead, at the end, to the same form.
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instead of considering a single product (30), one has to look at a linear combination of
such terms for all momenta qi and choose their coefficients so that the residual terms cancel
each other. If this could not be realized, one would still have the option to introduce into
Wp suitable lower order terms and cancel the residual terms order by order. In this way
the coefficients of terms of order n depend on those of order n + 2 and we see that the
construction of the transformation can be carried out recursively.

Provided that all of these requirements are met, the resulting transformation is of the
form

Wp =
∑
{qi}

α(p, {qi})
(

n∏
i=1

Z†qi
Zqi

)
Zp + suitable lower order terms. (37)

Here we only report the lowest order members of this family of transformations. The first
one corresponds to n = 1 and is the one that we have found already in section 3.3 (in this
case the residual terms result in a nonzero T , as we saw):

Wp = i
∑

q

ap,qZ
†
qZqZp. (38)

For n = 2 we find that the coefficient must be simply an imaginary constant:

Wp = i
∑
q,r

Z†qZqZ
†
rZrZp. (39)

Our study started by assuming that Wp is a single product of Z, Z† operators, a
monomial (even though later we had to generalize our assumption by considering linear
combinations of similar terms and lower order ones). However this is obviously not the
only possibility. Another possibility is investigated in appendix B, which starts from a
binomial and leads to the discovery of transformations of another interesting type:

Wp =
∑

q

bq(Sp,qSp,−q − 1)ZpZ
†
qZ

†
−q +

∑
q

b∗q(Sp,qSp,−q − 1)Z−qZqZp + 2b−pZ
†
−p

=
∑

q

bq(1− Sq,pS−q,p)Z
†
qZ

†
−qZp +

∑
q

b∗q(Sp,qSp,−q − 1)Z−qZqZp − 2bpZ
†
−p,

(40)

where bq has been chosen to satisfy b−q = bqSq,−q and we have assumed that the S-matrix
satisfies S(0) = Sp,p = −1. As already mentioned, this excludes only the case of free
bosons since for all other integrable models it is always true. Note that the last term
cannot be absorbed by reordering the operators of the first one.

Let us remark that one may continue in a similar way and construct other more
complex classes of transformations. In particular, one may even consider the infinite series
of products (19) which, unlike all cases presented above, do not give rise to expressions that
terminate at finite order. The study of such transformations will be discussed elsewhere.
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3.5. Properties of the two simple classes of transformations

In the previous sections we have found mainly two distinct classes of symmetries of the
ZF algebra which led to equations (20) and (40). Transformations of the first type (20)
are ones that generate a change in the S-matrix. However transformations of this first
type do not change the ground state of the theory since Z ′p = Zp + εWp annihilates the
same vacuum as Zp. The reason is that this transformation, like the second member of the
same class (39), always contains Z operators numbering one more than its Z† operators.
Finally, let us notice that it does not reduce to the Bogoliubov transformation in the free
limit S = ±1 since it does not depend explicitly on S.

Transformations of the second type (40) have three important properties. Firstly, they
do not change the S-matrix. Secondly, in the free limit where S → ±1, their nonlinear
terms (first and second) vanish, leaving only the linear term (last) Z†−p, which corresponds
to the Bogoliubov transformation. Thirdly and most importantly, they change the ground
state, since the first and last terms in (40) contain Z† operators numbering one more than
their Z operators, which means that the new annihilation operator does not annihilate
the old ground state. In particular, as we will show next, the infinitesimal change in
the ground state can be described as the creation of a pair of excitations with opposite
momenta.

Indeed, if we denote by |Ω〉 the ground state corresponding to the pre-quench operator
Z, by definition this state satisfies

Zk|Ω〉 = 0 (41)

for all k. This condition, expressed in the basis of the post-quench operator Z ′ (with
corresponding ground state |Ω′〉), reads

(Z ′k − εWk)(1 + εX)|Ω′〉 = ε(Z ′kX −Wk)|Ω′〉 = 0 (42)

where X is a suitable operator to be determined. For W given by (40) we easily find by
normal ordering that

X = −
∑

p

bpZ
′†
p Z ′†−p. (43)

Notice that this is the infinitesimal version of a squeezed coherent state. In fact we
can go much further and show that for real bp any finite transformation generated by
equation (40) ‘transforms’ the initial ground state into a squeezed coherent state11. To
prove this it is sufficient to show that any state |Ψ〉 of the squeezed form

|Ψ〉 = N (Kq) exp

(∑
q

KqZ
†
qZ

†
−q

)
|Ω〉 (44)

in the pre-quench basis preserves its squeezed form under the infinitesimal transforma-
tion (40), i.e. it is ‘transformed’ into a squeezed state in the post-quench basis:

|Ψ〉 = N (K ′
q) exp

(∑
q

K ′
qZ

′†
q Z ′†−q

)
|Ω′〉. (45)

11 By ‘transformed’ ground state, we mean the expansion of the ground state of the pre-quench operator Z in the
basis of the post-quench operator Z′.
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If this is true then, since the finite transformation can be built up by successive application
of infinitesimal ones and the initial ground state is ‘transformed’ into a squeezed state (43)
which remains of this form after every infinitesimal step of this procedure, we conclude
by induction that the transformation (40) does indeed ‘generate’ squeezed states.

To prove this statement we can follow a path parallel to the corresponding free field
calculation. For free bosons or fermions one should show that under an infinitesimal
Bogoliubov transformation

Z ′p = Zp + εapZ
†
−p (a−p = ap) (46)

any squeezed state of the form (44) remains squeezed as well. The easiest way to see this
is to employ the following equivalent form of (44):

|Ψ〉 = exp

[∑
q

Λq

(
Z†qZ

†
−q − Z−qZq

)]
|Ω〉 (47)

where Λq is a known function of Kq. In the above we have assumed that aq, Kq and
Λq are all real functions and all of the following are restricted to this case. The

operator (Z†qZ
†
−q − Z−qZq) in the exponent remains invariant under the Bogoliubov

transformation (46) and therefore the only change comes from the ground state

|Ω〉 =

(
1− ε

∑
q

aqZ
′†
q Z ′†−q

)
|Ω〉′ (48)

which can be absorbed in a shift of the coefficient Λq in the exponent:

|Ψ〉 = exp

[∑
q

(Λq − εaq)
(
Z ′†q Z ′†−q − Z ′−qZ

′
q

)]
|Ω′〉. (49)

This is exactly what we wished to show. To verify that equation (47) can also be written

in the form (44) one can normal order the squeezing operator exp[
∑

q Λq(Z
†
qZ

†
−q−Z−qZq)].

Alternatively one may first decompose the exponential of the sum over momenta
in (47) into an infinite product of exponentials12. Then observe that for each pair of

opposite momentum modes, the commutation relations of the operators Z†qZ
†
−q, Z−qZq and

1
2
(Z†qZq+Z†−qZ−q±1) (+ for bosons/− for fermions) form a closed algebra (SU(1, 1) algebra

for bosons/SU(2) algebra for fermions) and therefore we can rewrite the exponential as

e2Λq(Z†
qZ†

−q−Z−qZq) = e2Kq(Λq)Z†
qZ†

−qe2Lq(Λq)ZqZ−qeMq(Λq)(Z†
qZq+Z†

−qZ−q±1) (50)

for some appropriate coefficients Kq, Lq, Mq that it is not necessary to determine here.
Applying this operator to |Ω〉, we directly derive the result mentioned above.

Extending this computation to the general integrable case is almost straightforward.
The first step is to check that even in this general case, squeezed states can be equivalently
written in both forms (44) and (47). This is true, since the commutation relations of the
operators involved in the computation are not crucially different from the free fermionic

12 To avoid ordering problems in this product, first restrict the summation variable q to positive values only, as
we are allowed to do.
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ones. Indeed, if we define Y †
q = Z†qZ

†
−q, Nq = Z†qZq and N̄q = ZqZ

†
q = −Nq + 1, then

[Y †
q , Y †

p ] = 0 (51)

[Y †
q , Yp] = δq,−pS−p,p(N−p − N̄p) + δq,p(Np − N̄−p) (52)

[Y †
q , Np] = −(δq,−p + δq,p)Y

†
q (53)

and the only difference from the free fermion case is the factor S−p,p in (52). The next

step is to check whether the operator (Z†qZ
†
−q − Z−qZq) in the exponent of (47) remains

invariant under the transformation (40), which turns out, after some algebra, to be true
if bp is real. This completes the proof of our statement.

Let us now discuss another property of transformations of this second type: the
change induced in the conserved charges of the theory. As we have already seen in (24),
transformations of the first type that we studied leave all conserved charges invariant. In
the present case the transformation of Z†pZp turns out to be

Z ′†p Z ′p = Z†pZp − 2ε(bpZ
†
pZ

†
−p + b∗pZ−pZp), (54)

that is the conserved charges Q̂s do change but they remain quadratic in the Z operators.
In particular the Hamiltonian of the system which in the momentum representation and
according to our normalization of the ZF operators is H =

∑
p EpZ

†
pZp is transformed as

H ′ = H + ε
∑

p

[
∂Ep

∂ε
Z†pZp − 2Ep(bpZ

†
pZ

†
−p + b∗pZ−pZp)

]
(55)

where ∂Ep/∂ε reflects the change in the dispersion relation induced by the transformation.
Notice that this expression is reminiscent of the analogous one for Bogoliubov
transformations in free theories.

From a physical point of view and in particular from the perspective of quantum
quenches, the action of transformations of these two types consists in ‘dressing’ the initial
particle of the theory with a pair of newly created particles with opposite momenta, as
depicted in figure 1. Especially for the second type, if such a transformation describes a
quantum quench, then the initial ground state is expressed as a squeezed coherent state
in the post-quench basis, at least for real bp. Finally, the perturbation introduced in the
Hamiltonian after a small quantum quench of this type would be of quadratic form in the
pre-quench ZF operators.

4. Examples from physical theories

In this section we will present some first examples of transformations of ZF operators in
the context of two important integrable models: the sinh–Gordon and the Lieb–Liniger
ones. The first is one of the simplest and most well-studied relativistic integrable models
consisting of particles of a single type, while the second describes a system of non-
relativistic interacting bosons in (1 + 1)D and models experimental cold atom setups.
As has been recently shown in [38], the two models are closely related to each other,
since the Lieb–Liniger model can be obtained as a suitable non-relativistic limit of the
sinh–Gordon model.
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Figure 1. Diagrammatic representation of the transformations of the three types
in the context of quantum quenches. The linear Bogoliubov transformation that
works only in free systems corresponds to the transformation of an old particle
into a new antiparticle of opposite momentum. The transformations of the
two new types that work in the interacting case convert the old particle into
a new particle of the same momentum accompanied (or ‘dressed’) by a particle–
antiparticle (type I) or particle–particle (type II) pair with opposite momenta.
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In the sinh–Gordon model, an example of infinitesimal transformation would
correspond to a small quench of the mass m or the coupling constant g. Starting from
arbitrary initial values, such a quench would introduce into the Hamiltonian perturbations
(
∫

dx cosh gφ(x) and
∫

dx (2 cosh gφ(x) + gφ(x) sinh gφ(x)) respectively) that correspond
to an infinite series in terms of the Z, Z† operators, as can be seen from their form
factors [39]. An exception to this rule is when the initial model lies on a free point,
g = 0. In this special case where a small g is abruptly switched on, each term of the
expansion is smaller than the previous one by an amount of the order of g2, due to the
same property as holds for the form factors F φ

2n+1 of the physical field. Thus the derivation
of the corresponding infinitesimal transformation is simpler and can be done by means of
perturbation theory, which is what we do in the next section. In the Lieb–Liniger model
on the other hand, we use the known relation [40] between the physical field operator and
the ZF operators to find the infinitesimal transformation of the latter, again for the case
where the interaction changes from zero to a small value. Using the non-relativistic limit
mentioned above [38] we can verify the consistency of the results for the sinh–Gordon and
Lieb–Liniger models.

Note that in both cases the transformation refers to a small change from a free
bosonic to an interacting point of the theory and, according to a comment that we
made in a footnote of 3.1, the S-matrix at zero momentum S(0) is non-analytic (in
fact discontinuous) in the coupling constant at such points. Therefore we anticipate this
non-analyticity to become evident in our results and indeed it does this, as we will see
below.

4.1. The sinh–Gordon model

The sinh–Gordon model is a relativistic field theory in (1+1)D defined by the Hamiltonian

H =
1

2
π2 +

1

2

(
∂φ

∂x

)2

+
m2c2

g2
(cosh gφ− 1) (56)

where φ = φ(x, t) is a real scalar field, m is a mass scale and c is the speed of light. In
this integrable field theory there is only one type of particle with physical (renormalized)
mass M given by

M2 = m2 sin απ

απ
(57)

where α is the dimensionless renormalized coupling constant

α =
cg2

8π + cg2
. (58)

Particle scattering is fully determined by the two-particle S-matrix given by

Ssh−G(θ, α) =
sinh θ − i sin απ

sinh θ + i sin απ
(59)

where θ is the rapidity difference between the particles.
To calculate the ZF operators from first-order perturbation theory we consider the φ4

model

H =
1

2
π2 +

1

2

(
∂φ

∂x

)2

+
1

2
m2c2φ2 +

λ

4!
φ4 (60)

ht
tp

://
do

c.
re

ro
.c

h



with coupling constant λ = m2c2g2 (we set c = 1 from now on). We first define the
auxiliary operators

B†
+(k) = Ω+A†(k)Ω†+, B†

−(k) = Ω−A†(k)Ω†− (61)

where Ω± are the following evolution operators (Møller operators):

Ω± = lim
T→±∞

e−i
∫ 0
−T dtHint(t). (62)

As is known from the general scattering theory, the operators B†
+(k), B†

−(k) when acting
on the vacuum state of the interacting theory |Ω〉, create ‘in’ and ‘out’ states respectively.
If we consider the interaction Hamiltonian Hint as normal-ordered, we have

B†
±(k) = A†(k)− i

λ

4!

∫ 0

∓∞
dt

∫
dx
[
:φ4(x, t):, A†(k)

]
= A†(k)− i

λ

3!

∫ 0

∓∞
dt

∫
dx

e−iEkt+ikx

√
2Ek

:φ3(x, t): (63)

and expanding in terms of the free boson creation/annihilation operators A(k), A†(k),

B†
±(k) = A†(k)− i

λ

3!

∫ 0

∓∞
dt

e−iEkt

√
2Ek

∫
dk1 dk2 dk3 2πδ(k +

∑
i ki)

(2π)3
√

23Ek1Ek2Ek3

× [A(k1)A(k2)A(k3)e
−i(Ek1

+Ek2
+Ek3

)t

+ 3A†(−k1)A(k2)A(k3)e
−i(−Ek1

+Ek2
+Ek3

)t

+ 3A†(−k1)A
†(−k2)A(k3)e

−i(−Ek1
−Ek2

+Ek3
)t

+ A†(−k1)A
†(−k2)A

†(−k3)e
−i(−Ek1

−Ek2
−Ek3

)t]. (64)

In scattering theory the t-integration is understood under the ‘adiabatic switching’
prescription which means introducing an e−ε|t| factor into the integrand. According to
the identity ∫ 0

±∞
dt e−ε|t|−iωt =

i

ω ∓ iε
(65)

we then find

B†
±(k) = A†(k) +

λ

3!

1√
2Ek

∫
dk1 dk2 dk3 2πδ(k +

∑
i ki)

(2π)3
√

23Ek1Ek2Ek3

[
A(k1)A(k2)A(k3)

Ek + Ek1 + Ek2 + Ek3

+ 3
A†(−k1)A(k2)A(k3)

Ek − Ek1 + Ek2 + Ek3

+ 3
A†(−k1)A

†(−k2)A(k3)

Ek − Ek1 −Ek2 + Ek3 ± iε

+
A†(−k1)A

†(−k2)A
†(−k3)

Ek − Ek1 −Ek2 − Ek3

]
. (66)

Notice that we kept the ±iε shift only in the third term since this is the only one that has
a singularity (at k1 = −k, k2 = −k3 or k2 = −k, k1 = −k3). Using the formal identity

lim
ε→0+

1

ω ± iε
= P

(
1

ω

)
∓ iπ δ(ω) (67)
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we can rewrite the above as

B†
±(k) = B†(k)∓ iλ

8

∫
dq

2π

1

|kEq − qEk|A
†(k)A†(q)A(q) (68)

where

B†(k) ≡ A†(k) +
λ

3!

1√
2Ek

∫
dk1 dk2 dk3 2πδ(k +

∑
i ki)

(2π)3
√

23Ek1Ek2Ek3

[
A(k1)A(k2)A(k3)

Ek + Ek1 + Ek2 + Ek3

+ 3
A†(−k1)A(k2)A(k3)

Ek − Ek1 + Ek2 + Ek3

+ 3 P.V.
A†(−k1)A

†(−k2)A(k3)

Ek −Ek1 − Ek2 + Ek3

+
A†(−k1)A

†(−k2)A
†(−k3)

Ek − Ek1 −Ek2 − Ek3

]
. (69)

From their definition (61), each of the two operators B†
±(k) satisfy the same standard

commutation relations as the free operators A(k), A†(k). Now let us define the operator

Z†(k) ≡ B†(k)− iλ

8

∫
dq

2π

(
1

kEq − qEk

)
A†(k)A†(q)A(q)

= B†
±(k)− iλ

8

∫
dq

2π

(
1

kEq − qEk
∓ 1

|kEq − qEk|
)

A†(k)A†(q)A(q). (70)

Since this is of the form (20), we automatically know that Z†(k) and Z(k) satisfy the ZF
algebra with a non-trivial S-matrix given by

S(k, q) = 1− iλ

4(kEq − qEk)
(71)

which is indeed the correct first-order perturbation for the S-matrix (59):

Ssh−G(θ, α) = 1− cg2 i

4 sinh θ
+O(c2g4). (72)

Notice the infrared singularity in the coefficients of (70) and (72) when the momentum
difference k − q tends to zero. This reflects the non-analyticity of S(0) as g → 0 which
we talked about in the introduction of this section.

Next we consider the states created by the action of Z†(k) on the perturbed vacuum
|Ω〉, which by a calculation similar to the ones above, turns out to be

|Ω〉 = Ω±|0〉 =

⎛
⎝1− λ

4!

∫ 4∏
i

dki
2πδ(

∑4
i ki)

(2π)4

√
24
∏4

i Eki

A†(k1)A
†(k2)A

†(k3)A
†(k4)∑4

i Eki

⎞
⎠ |0〉. (73)

For the one-particle states it can be immediately seen that Z†(k)|Ω〉 = B†
±(k)|Ω〉 always

up to first order in λ. However, in order to verify that Z†(k) plays the right role in creating
in and out scattering states, we should check the two-particle states Z†(k1)Z

†(k2)|Ω〉. By
normal ordering we find

Z†(k1)Z
†(k2)|Ω〉 = B†

±(k1)B
†
±(k2)|Ω〉

− iλ

8

(
1

k1Ek2 − k2Ek1

∓ 1

|k1Ek2 − k2Ek1|
)

A†(k1)A
†(k2)|0〉. (74)
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Observing that k/Ek is a monotonically increasing function of k, we can easily see that if
k1 > k2, then

Z†(k1)Z
†(k2)|Ω〉 = B†

+(k1)B
†
+(k2)|Ω〉, (75)

i.e. it defines an in state, while if k1 < k2, then

Z†(k1)Z
†(k2)|Ω〉 = B†

−(k1)B
†
−(k2)|Ω〉, (76)

i.e. it defines an out state.
This example, apart from demonstrating how ZF operators emerge from the standard

perturbation theory of scattering, also illustrates the concepts developed before and in
particular the role of the first class of transformations (20) that we derived abstractly.
We close our presentation of physical examples with the Lieb–Liniger model. We will also
verify the consistency of our results for the two models, under the double non-relativistic
limit that reduces the former to the latter.

4.2. The Lieb–Liniger model

The Lieb–Liniger model describes a (1+1)D system of non-relativistic bosons interacting
with each other with a δ-function potential. Its Hamiltonian in second-quantized form is

H =

∫ +L

−L

dx
(

1
2
∂xΨ

†(x)∂xΨ(x) + λΨ†(x)Ψ†(x)Ψ(x)Ψ(x)
)
, (77)

where λ is now the interaction strength. The ground state energy for a system of N
bosons as well as its thermodynamics can be exactly worked out by means of the Bethe
ansatz [41]. The exact solution expresses the energy of the ground state and the excitation
spectrum in terms of the dimensionless coupling constant γ ≡ λ/ρ where ρ = N/L is the
density of bosons with N, L→∞.

In this model the relation between the bosonic field operator Ψ(x) and the ZF
operators Rλ(k) that diagonalize the Hamiltonian for L → ∞ has already been found
using the inverse scattering method [40]:

Ψ(x) =

∞∑
N=0

∫ N∏
i=1

dpi

2π

N∏
j=0

dkj

2π
gN({p}, {k}; x)R†λ(p1) · · ·R†λ(pN)Rλ(kN) · · ·Rλ(k1)Rλ(k0)

(78)

where

gN({p}, {k}; x) =
(−λ)N exp[i(

∑N
i=0 ki −

∑N
i=1 pi)x]∏N

j=1(pj − kj − iε)(pj − kj−1 − iε)
. (79)

Indeed it can be shown that the R, R† operators diagonalize the Hamiltonian and satisfy
the ZF algebra

[H, R†λ(q)] = q2R†λ(q), (80)

Rλ(q)Rλ(q
′) = Sλ(q

′ − q)Rλ(q
′)Rλ(q), (81)

Rλ(q)R
†
λ(q

′) = Sλ(q − q′)R†λ(q′)Rλ(q) + 2πδ(q − q′) (82)
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where the S-matrix is

Sλ(q) =
q − iλ

q + iλ
. (83)

Let us consider the infinitesimal transformation from the free bosonic point λ = 0 to
a small value λ. From (78) we have13

Rλ(k) = R0(k) + λ

∫
dq dq′

(2π)2

R†0(q + q′ − k)R0(q)R0(q
′)

(q − k − iε)(q′ − k − iε)
+O(λ2). (84)

The S-matrix is no longer the unit matrix but becomes instead

Sλ(p) = 1− λ
2i

p
+O(λ2) (85)

and so, according to our previous findings, we expect the transformation to contain the
generator of S-matrix shifts (20) with coefficients ak,q = i/(q − k). Indeed, using the
identity (67) we recognize that part of the infinitesimal transformation (84) has exactly
the form of (20) with the right coefficient∫

dq

2π

i

q − k
R†0(q)R0(q)R0(k), (86)

while the remaining part does not affect the S-matrix. Once again, notice the infrared
singularity in the coefficient of the above expression for q = k.

Lastly, we mention that the infinitesimal transformations (70) and (84) derived for
the sinh–Gordon and Lieb–Liniger models, respectively, are consistent with each other
under the double non-relativistic limit c → ∞, g → 0, gc : const, that leads from the
former to the latter model. Following [38] we substitute the field φ in (63) as

φ(x, t) =
1√
2m

(ψ(x, t)e−imc2t + ψ†(x, t)e+imc2t) (87)

and keep only the non-oscillating terms, rewriting first all expressions with their c
dependence explicit and taking into account that in the non-relativistic limit, Ek =
mc2 + k2/2m + · · ·. After some algebra we verify that (70) reduces to (84).

5. Conclusions

In this paper we have investigated how the initial state of a quantum quench in an
integrable model can be expressed, from first principles, in terms of ZF operators,
without relying on the usual mapping to slab geometry and the associated boundary
renormalization group arguments [11, 12, 24]. We show that this result can be achieved
by deriving the relation between the pre-quench and the post-quench operators on the
condition that such a relation respects the Zamolodchikov–Faddeev (ZF) algebra satisfied
by integrable models.

13 Note that, unlike in a relativistic free field theory where the creation–annihilation operators are linear
combinations of the field φ and its conjugate momentum π, in a non-relativistic free field theory the creation–
annihilation operators are the bosonic field itself R0(k) =

∫
dx e−ikxΨ(x). Also the conjugate momentum is

Π = iΨ† and does not appear in the Hamiltonian.
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Under the conditions that such transformations must satisfy the ZF algebra at the
infinitesimal order, we initially showed that the usual linear Bogoliubov transformations
do not respect the ZF algebra, apart from for the trivial cases of free bosons or fermions,
a result that holds generally for finite transformations too.

We have then identified two important classes of transformations. Those in the
first class change the S-matrix of the theory but preserve its ground state as well
as its conserved charges. We also argued that any infinitesimal transformation can
be decomposed into a part that induces the S-matrix shift and a remaining part
that does not alter the S-matrix. Those in the second class belong to the latter
subset of transformations, which can be regarded as a generalization of the Bogoliubov
transformations for interacting theories, since they reduce to the usual Bogoliubov
transformations whenever the integrable model reaches a free bosonic or fermionic
point. Like in the free case, the ground state of the system becomes a squeezed
state when expressed in the transformed ZF basis under such a generalized Bogoliubov
transformation, at least when its coefficients are real. We have also shown that the change
in the Hamiltonian (and in the other conserved charges of the theory) is of the same form
as that for the Bogoliubov transformations. The net effect of transformations of this type
is to ‘dress’ the initial quasiparticle with pairs of new particles with momenta opposite to
each other.

We have also outlined how one could proceed further in this program to identify the
transformations which preserve the ZF algebra, in particular pointing out the existence of
transformations of higher complexity characterized by the fact that, even for infinitesimal
quenches, they are associated with an infinite series of terms given by products of the
initial creation/annihilation operators. From the quantum quench perspective, this means
that even a small quench of the physical parameters of an integrable model may result
in an infinite series which links the pre-quench and the post-quench operators. In
this case, the calculation of the initial state made on first principles is rather difficult,
unless a truncation or resummation of the series can be established on the grounds of
a different argument. In such a case, for instance, it may be possible to reorganize
the terms of the series on the basis of a small-density expansion, following the concepts
developed in [25]. We hope that our work on ZF algebra transformations will stimulate
further investigation of their structure and properties, from both pure and applied points
of view.

Lastly we exemplified our approach in the context of the sinh–Gordon and Lieb–
Liniger models. We restricted ourselves to perturbations about the free bosonic point
of these models since in this case the transformations can be found relatively easily and
contain only up to cubic terms in the ZF operators. We expect analogous simplification
to occur near free points of other integrable models too and it would be interesting to
explore some physical realization of such quench processes. As regards the sinh–Gordon
model, an application of our results to the corresponding quantum quench problem of
an abrupt switch-on of the interaction would give results comparable with those from
earlier work [42]. For the Lieb–Liniger model, however, further manipulation is required,
mainly due to the fact that the ground state is not the empty vacuum but contains a large
number of particles, the number being proportional to the size of the system. This issue
is discussed and a numerical approximation is developed in [37]. One recent numerical
study of a special quantum quench in the Lieb–Liniger model is [17].
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Appendix A. Squeezed states in free quantum field theories

In this appendix we show that the squeezed coherent states in a quantum quench of free
theories are a consequence of the Bogoliubov transformation of their operators.

Bosonic theory. Let us consider firstly the quench in a bosonic theory with
Hamiltonian [12]

H = 1
2

∫ [
π2 + (∇ϕ)2 + m2

0ϕ
2
]

dx.

This system can be diagonalized in momentum space:

H =

∫
Ω0

k : A0†
k A0

k :, (Ω0
k)

2 = m2
0 + k2,

A0
k =

1√
2Ω0

k

(
Ω0

kϕk + iπk

)
, A0†

k =
1√
2Ω0

k

(
Ω0

kϕ−k − iπ−k

)
,

with the ground state |Ψ0〉 identified by the condition

A0
k|Ψ0〉 = 0. (A.1)

Imagine now that, after having prepared the system in its ground state, we quench the
mass m0 → m. The relation between the pre-quench ladder operators (A0

k, A
0†
k ) and the

post-quench ones (Ak, A
†
k) is a Bogoliubov transformation:

Ak = ckA
0
k + dkA

0†
−k, A†k = ckA

0†
k + dkA

0
−k

A0
k = ckAk − dkA

†
−k, A0†

k = ckA
†
k − dkA−k,

where the coefficients are given by

ck =
Ωk + Ω0

k

2
√

ΩkΩ
0
k

, dk =
Ωk − Ω0

k

2
√

ΩkΩ
0
k

.

Substituting the expression for A0
k from the Bogoliubov transformation into equa-

tion (A.1), we see that, in terms of the new operators, the initial state satisfies the
condition

[ckAk − dkA
†
−k]|Ψ0〉 = 0. (A.2)

whose solution is given in terms of a squeezed coherent state:

|Ψ0〉 = N exp

[∫ ∞

−∞
Kboson(k)A†kA

†
−k dk

]
|0〉, (A.3)

where

Kboson(k) =
Ω0

k − Ωk

Ω0
k + Ωk

. (A.4)
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This quantity can be written in a suggestive way by introducing the rapidities of the
particle relative to the initial and final situations, i.e.

Ω0 = m0 cosh θ0, k = m0 sinh θ0

Ω = m cosh θ, k = m sinh θ.
(A.5)

From the equality of the initial and final momenta, we have the relation which links the
two rapidities:

m0 sinh θ0 = m sinh θ ⇒ m0

m
=

sinh θ

sinh θ0

(A.6)

and therefore, the amplitude Kboson(k) of equation (A.4) can be neatly written as

Kboson(θ, θ0) =
m0 cosh θ0 −m cosh θ

m0 cosh θ0 + m cosh θ
=

m0/m cosh θ0 − cosh θ

m0/m cosh θ0 + cosh θ

=
sinh θ cosh θ0 − sinh θ0 cosh θ

sinh θ cosh θ0 + sinh θ0 cosh θ
=

sinh(θ − θ0)

sinh(θ + θ0)
. (A.7)

Fermionic theory. One can easily work out the Bogoliubov transformation relative
to the quench of the mass of a free fermionic system [23]. Consider, in particular, a free
Majorana fermion in (1+1) dimensions, with the mode expansion of the two components
of this field given by

ψ1(x, t) =

∫ +∞

−∞
dp
[
α(p)A(p)e−iEt+ipx + ᾱ(p)A†(p)eiEt−ipx

]
ψ2(x, t) =

∫ +∞

−∞
dp
[
β(p)A(p)e−iEt+ipx + β̄(p)A†(p)eiEt−ipx

]
where

α(p) =
ω

2π
√

2

√
E + p

E
, α(p) =

ω

2π
√

2

√
E + p

E

β(p) =
ω̄

2π
√

2

√
E − p

E
, β̄(p) =

ω

2π
√

2

√
E − p

E

with ω = exp(iπ/4). At t = 0, i.e. at the instant of the quench, we can extract the Fourier

mode of each component of the Majorana field ψi(x, 0) =
∫

dp ψ̂i(p)eipx, given by

ψ̂1(p) = α(p)A(p) + α(−p)A†(−p) ψ̂2(p) = β(p)A(p) + β(−p)A†(−p).

Suppose now that the mass of the field is changed from m0 to m at t = 0 and let us denote
by (A0(p), A†0(p)) and (A(p), A†(p)) the sets of oscillators before and after the quench. The
proper boundary condition associated with such a situation is the continuity of the field
components before and after the quench, i.e. ψ0

i (x, t = 0) = ψi(x, t = 0), which implies

ψ̂0
i (p) = ψ̂i(p). This gives rise to the Bogoliubov transformation between the two sets of

oscillators:

A0(p) = u(p)A(p) + iv(p)A†(−p) A†0(p) = u(p)A†(p)− iv(p)A(−p)

where

u(p) =
1

2E

[√
(E0 + p)(E + p) +

√
(E0 − p)(E − p)

]
v(p) =

1

2E

[√
(E0 − p)(E + p)−

√
(E0 + p)(E − p)

]
.
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Notice that these functions satisfy the relations u(p) = u(−p) and v(p) = −v(−p) together
with u2(p) + v2(p) = E0/E, which refers to the normalization of the respective set of
oscillators.

With the same procedure as we used in the bosonic case, it is easy to see that the
boundary state corresponding to this quench can be written as

|B〉 = exp

(∫ ∞

−∞
dp Kfermion(p)A†(p)A†(−p)

)
|0〉,

where

Kfermion(p) = −Kfermion(−p) = i

√
(E0 − p)(E + p)−√(E0 + p)(E − p)√
(E0 + p)(E + p) +

√
(E0 − p)(E − p)

. (A.8)

As in the bosonic case, this quantity can be expressed in a more concise form by
introducing the rapidities of the particle before and after the quench, i.e.

E0 ± p = m0e
±θ0 , E ± p = me±θ.

Substituting these expressions in (A.8), we get

Kfermion(θ, θ0) = i
sinh((θ − θ0)/2)

cosh((θ + θ0)/2)
. (A.9)

In conclusion, the squeezed coherent form of the initial state in free theories comes from the
fact that, in any quantum quench of these systems, the creation–annihilation operators
before and after it are related by a Bogoliubov transformation. And this in turn is a
consequence of the canonical commutation/anti-commutation relations satisfied by these
fields14.

Finally, notice that both the bosonic and fermionic amplitudes K(p) do not satisfy,
in general, a unitarity equation, in contrast to the amplitudes of squeezed coherent states
in the purely boundary integrable theories studied by Ghoshal and Zamolodchikov [36].
The reason for this condition being required for purely boundary field theory but not
for an arbitrary quench process is quite easy to understand. In purely boundary theory,
all the degrees of freedom for t < 0 are completely frozen: the hard-wall boundary does
not allow any process of transmission through the boundary and this ends up in the
unitarity condition. However, for quantum quenches in free theories, there are degrees of
freedom also for t < 0, which are related to the ones for t > 0 just by the Bogoliubov
transformations. Stated another way, this says that the boundary condition in free theories
allows for transmission, as is shown in figure A.1. The degrees of freedom present on both
sides of the boundary prevent the bosonic and fermionic amplitudes (A.4) and (A.8)
from satisfying a unitarity equation. Notice that the only case where they satisfy a
unitarity equation is that where we freeze the degrees of freedom before the quench by
taking the limit m0 → ∞: in this limit, in fact, we have a transmissionless boundary
which implements in both theories the Dirichlet boundary condition, with Kboson = 1 and
Kfermion = i tanh(θ/2) respectively.

14 To be precise there can be exceptions to this rule since it is possible to construct generalized Bogoliubov
transformations which satisfy the CCR/CAR but are nonlinear [43]–[45]. These however correspond to non-
quadratic Hamiltonians which, even though they can be reduced to free ones, are uncommon in physically
interesting cases.
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Figure A.1. The boundary condition for a mass quench allows for transmission.
Notice that, for free theories, there is no particle production at the boundary and
the transmitted particle always has the same momentum as the incoming one,
since momentum is conserved at the boundary. However, since the masses are
different at x < 0 and x > 0, the rapidity changes from θ to θ′.

Appendix B. Derivation of two classes of generators of ZF algebra transformations

In this appendix we present the derivation of the two simple classes of infinitesimal
transformations of the ZF algebra that we introduced in the main text. As already
mentioned, we can always write W as a linear combination of products of Z and Z†. The
first class arises when we consider W to be a single such product:

Wp =
∏

Zi

∏
Z†j with p =

∑
pi −

∑
pj. (B.1)

For brevity we use the notation Zi ≡ Zpi
when there is no confusion about the meaning

of the indices, and also the symbol ‘�’ that we defined in section 3.4. Then we find

W1Z2 � λ12Z2W1 (B.2)

where λ12 =
∏

Si2

∏
S2j (note the implicit dependence on p1 through the momentum

condition in (B.1)). Similarly we have

W1Z
†
2 � λ∗12Z

†
2W1. (B.3)

From (16) and (17) we have the conditions

W1Z2 + Z1W2 � S12(Z2W1 + W2Z1) (B.4)

W1Z
†
2 + Z1W

†
2 � S21(Z

†
2W1 + W †

2Z1) (B.5)

where we ignored T12 since the corresponding terms are not of highest order (unless W
is a single operator instead of a product, which is the linear case that has already been
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excluded as not fulfilling the conditions). In the main text equation (32), we considered
the simple choice λ12 = S12 which automatically satisfies the above condition but may
not be the only possibility. Indeed (B.4) is in general a weaker condition than this choice.
Strictly speaking, the two conditions above require

(λ12 − S12)Z2W1 + (λ∗21 − S12)W2Z1 � 0 (B.6)

(λ∗12 − S21)Z
†
2W1 + (λ21 − S21)W

†
2Z1 � 0 (B.7)

which means either that λ12 = S12 as before, or that W2Z1 and Z2W1 contain exactly
the same operators and similarly for W †

2Z1 and Z†2W1. In this last case Wp must contain

Zp, i.e. Wp = ZpW̃0 where W̃0 has momentum zero, and, as can be easily deduced from
the above equations, it must be independent of p and contain the same operators as its
Hermitian conjugate W̃ †

0 , that is W̃0 �
∏

Z†i Zi. But this is again exactly the same case
as was considered before (33) and it corresponds to λ12 = S12.

Another possibility arises when we consider Wp to be a linear combination of two
products of operators of the previous form:

Wp = a+,pW+,p + a−,pW−,p. (B.8)

The conditions are then

a+1W+1Z2 + a+2Z1W+2 + a−1W−1Z2 + a−2Z1W−2

� S12(a+1Z2W+1 + a+2W+2Z1 + a−1Z2W−1 + a−2W−2Z1) (B.9)

a+1W+1Z
†
2 + a∗+2Z1W

†
+2 + a−1W−1Z

†
2 + a∗−2Z1W

†
−2

� S21(a+1Z
†
2W+1 + a∗+2W

†
+2Z1 + a−1Z

†
2W−1 + a∗−2W

†
−2Z1) (B.10)

or

(λ+12 − S12)a+1Z2W+1 + (λ∗+21 − S12)a+2W+2Z1

+ (λ−12 − S12)a−1Z2W−1 + (λ∗−21 − S12)a−2W−2Z1 � 0 (B.11)

(λ∗+12 − S21)a+1Z
†
2W+1 + (λ+21 − S21)a

∗
+2W

†
+2Z1

+ (λ∗−12 − S21)a−1Z
†
2W−1 + (λ−21 − S21)a

∗
−2W

†
−2Z1 � 0. (B.12)

Like before, one obvious choice is λ+12 = λ−12 = S12 which is trivial since each of W+

and W− must fall in the earlier discussed case, but unlike before there is an alternative
that is not equally trivial. If Z2W+1 and W−2Z1 contain the same operators and the same
holds for Z†2W+1 and W †

−2Z1 (and similarly for the other pairs), then W+,p and W−,p can
be written in the form

W+,p = ZpW̃0 and W−,p = ZpW̃
†
0 (B.13)

where W̃0 has momentum zero and must be independent of p. If we define

ZpW̃0 � μpW̃0Zp (B.14)
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then λ+12 = μ∗2S12, λ−12 = μ2S12 and the above conditions are equivalent to the set of
equations

a−2

a−1

=
μ2 − 1

μ1 − 1
(B.15)

a+2

a+1
=

μ∗2 − 1

μ∗1 − 1
(B.16)

a∗−2

a+1
= −μ∗2 − 1

μ∗1 − 1
(B.17)

a∗+2

a−1
= −μ2 − 1

μ1 − 1
(B.18)

which have to be valid for any choice of p1, p2. The solution is

a+,p = b(μ∗p − 1) (B.19)

a−,p = −b∗(μp − 1) (B.20)

for some constant b.
A simple choice for W̃0 is the product of two operators that create a pair of particles

with opposite momenta Z†qZ
†
−q. Obviously a sum over all such pairs can be used, leading

to the following expression for Wp:

Wp �
∑

q

bq(Sp,qSp,−q − 1)ZpZ
†
qZ

†
−q +

∑
q

b∗q(Sp,qSp,−q − 1)Z−qZqZp (B.21)

where by symmetry of the sums under q → −q we find that bq can be chosen to satisfy
b−q = bqSq,−q. Substituting into the general conditions (28) and (29) we find out that an

additional lower order term proportional to Z†−p is necessary in Wp in order to satisfy the
full-form conditions. Overall the transformation is

Wp =
∑

q

bq(Sp,qSp,−q − 1)ZpZ
†
qZ

†
−q +

∑
q

b∗q(Sp,qSp,−q − 1)Z−qZqZp + 2b−pZ
†
−p. (B.22)

Note that the last term cannot be absorbed by reordering the operators of the first one.
Other choices for W̃0 are still possible and may lead to more complex families of

transformations. One may also consider linear combinations of more than two products
and continue in a similar fashion.
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[21] Barthel T and Schollwöck U, Dephasing and the steady state in quantum many-particle systems, 2008 Phys.

Rev. Lett. 100 100601

[22] Manmana S R, Wessel S, Noack R M and Muramatsu A, Strongly correlated fermions after a quantum

quench, 2007 Phys. Rev. Lett. 98 210405

[23] Rossini D, Silva A, Mussardo G and Santoro G E, Effective thermal dynamics following a quantum quench

in a spin chain, 2009 Phys. Rev. Lett. 102 127204

[24] Fioretto D and Mussardo G, Quantum quenches in integrable field theories, 2010 New J. Phys. 12 055015

[25] Calabrese P, Essler F H L and Fagotti M, Quantum quench in the transverse-field Ising chain, 2011 Phys.

Rev. Lett. 106 227203

[26] Cazalilla M A, Iucci A and Chung M C, Thermalization and quantum correlations in exactly solvable

models, 2011 arXiv:1106.5206

[27] Bañuls M C, Cirac J I and Hastings M B, Strong and weak thermalization of infinite nonintegrable quantum

systems, 2011 Phys. Rev. Lett. 106 050405

[28] Gogolin C, Müller M P and Eisert J, Absence of thermalization in nonintegrable systems, 2011 Phys. Rev.

Lett. 106 40401
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