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Abstract. With regard to the thermalization problem in isolated quantum
systems, we investigate the dynamics following a quantum quench of the sine-
Gordon model (sGM) in the Luther–Emery and the semiclassical limits. We
consider the quench from the gapped to the gapless phase, as well as the reverse
one. By obtaining analytic expressions for the one- and two-point correlation
functions of the order parameter operator at zero-temperature, the manifestations
of integrability in the absence of thermalization in the sGM are studied. It
is shown that correlations in the long-time regime after the quench are well
described by a generalized Gibbs ensemble. We also consider the case where the
system is initially in contact with a reservoir at finite temperature. The possible
relevance of our results to current and future experiments with ultracold atomic
systems is also considered.
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1. Introduction

Recent experiments in the field of ultracold atomic gases have spurred much interest in
the thermalization dynamics of isolated quantum systems [1]–[28]. So far, the latter were
considered mere idealizations of real systems, as most of the many-particle systems of interest
for quantum statistical mechanics, such as solids and quantum fluids, are strongly coupled
to their environments. However, the creation of large ensembles of ultracold atoms with
highly controllable properties, which remain fully quantum coherent for relatively long times
(compared to the typical duration of an experiment), has completely changed this perception.
This has also raised concerns about the mechanisms of thermalization in these systems, and
even, in some recent experiment [6], lack of thermalization has been observed.

The problem of thermalization in isolated quantum systems can be posed as the study of
the dynamics of a system following a quantum quench, that is to say, the study of the response
of a system to the change of a control parameter of the Hamiltonian over a timescale that is
much shorter than any other relevant timescale of the system, so that the sudden approximation
can be applied. Therefore, it is assumed that, for t < 0, the Hamiltonian is Hi and the system
is in a given eigenstate of it, |8i〉. At t = 0 the Hamiltonian is changed to Hf and thus for
t > 0 the system evolves unitarily in isolation according to the dynamics dictated by Hf.
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The quantum quench can also be used to describe the evolution of a system that has been
prepared in a given state that is not an eigenstate of the Hamiltonian. Thus, the question that
naturally arises is whether a set of sufficiently interesting observables of the system reaches
some form of stationary state that can described by a standard Gibbs ensemble. In such a
case, we would speak of thermalization to a standard statistical ensemble (microcanonical,
canonical, or grand-canonical). However, this may not be the case as it turns out that for several
integrable models [11, 14, 15, 19, 26] the long-time behavior of certain observables can instead
be obtained from a generalized Gibbs ensemble characterized by a different temperature for each
eigenmode of the Hamiltonian Hf [11, 14], [26]–[28]. The non-standard or generalized Gibbs
ensembles follow from maximizing the von Neumann entropy with the constraints imposed
by the set of integrals of motion larger than the total energy and particle number. As to the
situation concerning nonintegrable systems, the issue of the thermalization dynamics is still
not fully understood although some recent results [20, 21, 24] indicate that thermalization to
a standard ensemble should eventually occur at sufficiently long times. However, the actual
thermalization dynamics and how it depends on how close the system is to integrability are
still very poorly understood. As far as one dimensional are concerned (for which the strong
kinematic constraints usually cause the integrability to be more ubiquitous than in higher
dimensions), numerical simulations have yielded conflicting results concerning the existence
of thermalization [12, 13, 23]. Indeed, in a recent work, Rigol and coworkers [29, 30] have
also pointed out that the statistics of the constituent particles may also play an important role in
determining the thermalization dynamics.

Furthermore, in addition to studying the quench dynamics starting from a pure state, it will
also be interesting to consider quantum quenches where the system is initially prepared in a
thermal state by being at t < 0 in contact with an energy reservoir at temperature T . After the
quench, the system is isolated from the reservoir and evolves unitarily according to the dynamics
dictated by different Hamiltonians Hf. This is the simplest kind of mixed initial state one can
consider and it allows us to analyze the effect on the quench dynamics of mixing (by means of
the initial temperature) a fraction of the excited states with the ground state of Hi.

In this work, we shall analyze the quench dynamics of the sine-Gordon model (sGM). This
is an integrable field theory, but its exact solution is indeed quite difficult to deal with as the
elementary excitations satisfy a rather non-standard algebra. Instead, we confine ourselves to
two limits in which the model can be written as a quadratic Hamiltonian. In one of these two
limits, the so-called Luther–Emery (LE) limit, using a trick called refermionization [31, 32],
the model describes a system of one-dimensional (1D) massive (i.e. gapped) Dirac fermions.
The fermions and their anti-particles (or holes, to use solid-state physics language) describe
the solitonic and anti-solitonic excitations of the sGM, which, in the LE limit, happen to be
non-interacting. In another limit, the model can be rather well approximated by a quadratic
model of massive bosons. The latter describes a series of bound states of solitons and anti-
solitons in the limit where interaction between them is strongly attractive. As explained
elsewhere [11, 26], the quench dynamics of a quadratic Hamiltonian can be solved exactly via
a time-dependent Bogoliubov transformation. We shall consider here two kinds of quenches,
which correspond to the appearance and disappearance of the mass term (i.e. the gap) in the
sGM. At zero temperature, we found that correlations that occur when the system is quenched
from the gapped to the gapless phase at zero or low temperature exhibit an exponential decay
with a correlation length/time fixed by the gap. This result is in agreement with the results
of Calabrese and Cardy [9, 15], based on a mapping to a boundary conformal field theory.
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At high temperatures, however, the correlation length (time) is determined by the temperature.
At intermediate temperatures, the system will exhibit a crossover between the zero temperature
(gap-dominated) and the high-temperature (temperature-dominated) regimes. On the other
hand, correlations following a quench from the gapped to the gapless phase at the LE and the
semi-classical limit exhibit somewhat different behavior, which may indicate a breakdown of
the semiclassical approximation or a qualitative change in the behavior of correlations as one
moves away from the LE limit.

This paper is organized as follows. In section 2, we introduce the (quantum) sine-Gordon
model and its phases and describe the problem of quantum quenches in this model. In section 3
we consider quenches in the LE limit at zero temperature, whereas in section 4 we consider the
quenches in the semiclassical limit. In section 5, we consider the effect of thermal fluctuations
on the initial state assuming that contact with the energy reservoir is removed at the time the
system is quenched and therefore it evolves in isolation subsequently. In section 6, we consider
the issue of the long-time asymptotic behavior of correlations and expectation values, and
show that it is given by a generalization of the Gibbs ensemble, as recently pointed out by
Rigol et al [14]. Finally, in section 7, we discuss some possible experimental consequences of
this work. We provide a summary of the conclusions of this work in section 8. The results
for the correlations at zero temperature reported in this paper were previously available as
part of our unpublished preprint [28]. Since our preprint appeared, other authors have also
considered the thermalization dynamics in the sGM. In particular (see this special issue), Sabio
and Kehrein [33] used a flow equation method. Fioretto and Mussardo used [34] form factor
methods to tackle quantum quenches in the sGM, finding strong evidence that the long-time
behavior of a local operator is described by a generalized Gibbs ensemble. Furthermore, using
the time-dependent renormalization group [35, 36], Barmettler et al [37] have investigated the
quench dynamics of the XXZ model, which in the continuum limit reduces to the sGM.

2. The sine-Gordon model

The sGM is described by the following Hamiltonian:

HsG(t)= H0 −
h̄vg(t)

πa2
0

∫
dx cos 2φ, (1)

H0 =
h̄v

2π

∫
dx : K −1 (∂xφ)

2 + K (∂xθ)
2 :, (2)

where : . . . : stands for the normal order of the operators [31, 32, 38], a0 is a short-distance
cut-off and the phase and density fields, θ(x) and φ(x), are canonically conjugated in the sense
that they obey [φ(x), ∂x ′θ(x ′)] = iπδ(x − x ′). This model can be regarded as a perturbation of
the Luttinger model (see e.g. [31, 32, 38] for reviews), which still yields an integrable model.
In equilibrium the model is known to exhibit two phases, which, according to the renormali-
zation group analysis [31, 32] and for infinitesimal and positive values of the coupling in front
of the cosine term, roughly correspond to K < 2 (gapped phase) and K > 2 (gapless phase).

In order to study the non-equilibrium (quench) dynamics, we will consider two different
types of quenches: the quench from the gapped to the gapless phase and the reverse process,
the quench from the gapless to the gapped. In the first case, we assume that the dimensionless
coupling g(t) is suddenly turned on, i.e. g(t)= g θ(−t). With this choice, Hi = HsG(t 6 0)
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is a Hamiltonian whose ground state exhibits a frequency gap, m, to all excitations, whereas
Hf = HsG(t > 0) has gapless excitations. Conversely, in the second case, we consider that
g(t) is suddenly turned off, i.e. g(t)= g θ(t). In this case, the ground state of Hi is gapless,
whereas the Hamiltonian performing the time evolution, Hf, has gapped excitations. However,
although both Hi and Hf define integrable field theories, for a general choice of the parameters
K and g, the quench dynamics cannot be analyzed, in general, by the elementary methods
of [11, 26]. Nevertheless, in two limits, the LE (which corresponds to K = 1, see section 3)
and the semiclassical (that is, for K � 1, section 4) limits, it is possible to study the quench
dynamics by methods similar to those of [26]. However, as explained above, the statistics of the
elementary excitations happens to be different in these two limits.

3. The Luther–Emery limit

3.1. Introductory remarks

Let us start by considering the sGM, equation (3), for K = 1, which is the so-called
Luther–Emery (LE) limit. It is convenient to introduce rescaled density and phase fields,
which will be denoted as ϕ(x)= K −1/2φ(x) and ϕ̃(x)= K 1/2θ(x). Thus, the Hamiltonian of
equation (1) becomes

HgG(t)=
h̄v

2π

∫
dx : (∂xϕ)

2 + (∂x ϕ̃)
2 : −

h̄vg(t)

πa2
0

∫
dx cos κϕ, (3)

where κ = 2
√

K . At the LE limit, κ = 2 (i.e. K = 1), and the model can be rewritten as a 1D
model of massive Dirac fermions with mass by using the following bosonization formula for
the Fermi field operators [31, 32]:

ψα(x)=
ηαeisαπ/4

√
2πa

eisαφα(x), (4)

where sr = −sl = +1 and the chiral fields φr(x)= ϕ(x)+ ϕ̃(x) and φl(x)= ϕ(x)− ϕ̃(x) . For
computational convenience, we choose the Majorana fermions in equation (4) to be ηr = σx and
ηl = iσy , where σx and σy are the familiar Pauli matrices. In addition, we note that the gradient
terms in equation (3) can be written as the kinetic energy of free massless Dirac fermions in one
dimension [31, 32, 38]:

H0 = −ih̄v
∫

dx : ψ†
r (x)∂xψr(x)−ψ

†
l (x)∂xψl(x) : . (5)

As far as the cosine operator is concerned, the bosonization formula, equation (4), implies that

ψ†
r (x)ψl(x)+ψ†

l (x)ψr(x)=
0

πa0
cos 2ϕ(x) (6)

=
0

π
: cos 2ϕ(x) : (7)

where 0 = iσxσy . This is almost the cosine term of the sGM in the LE limit (cf equation (3)),
except for the presence of the operator 0. However, we note that 02

= 1 and that this
operator also commutes with H0 and with the operator in the left-hand side of equation (6).
The first property implies that the eigenvalues of 0 are ±1, whereas the second property
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implies that HLE(t)= H0 + h̄vg(t)
∫

dx[ψ†
r (x)ψl(x)+ψ†

l (x)ψr(x)] and 0 can be diagonalized
simultaneously. After choosing the eigenspace where 0 = −1, we obtain that

HLE(t)= − ih̄v
∫

dx : ψ†
r (x)∂xψr(x)−ψ

†
l (x)∂xψl(x) :

+ h̄vg(t)
∫

dx
[
ψ†

r (x)ψl(x)+ψ†
l (x)ψr(x)

]
, (8)

which is equivalent to equation (3) when κ = 2.
To gain some insight into the phases described by the sGM, let us first consider the LE

Hamiltonian HLE in two (time-independent) situations: (i) g(t)= 0 (the gapless free fermion
phase, which coincides with the Luttinger model for K = 1 [31, 32, 38]) and (ii) g(t)=

g > 0, i.e. a time-independent constant (which corresponds to the gapped phase). In order to
diagonalize the Hamiltonian, it is convenient to work in Fourier space and write the fermion
field operator as

ψα(x)=
1

L

∑
p

e−a0|p| eipx ψα(p), (9)

where α = r, l. The limit where the cut-off a0 → 0+ should be formally taken at the end of the
calculations, but in some cases we shall not do it in order to regularize certain short-distance
divergences of the quantum sGM. It will also be useful to introduce a spinor whose components
are the right and left moving fields and which will make the notation more compact:

9(p)=

[
ψr(p)
ψl(p)

]
, H(p)=

[
h̄ω0(p) 0

0 −h̄ω0(p)

]
. (10)

Thus the Hamiltonian for the gapless phase, H0, reads

H0 =

∑
p

:9†(p) ·H0(p) ·9(p) :, (11)

where ω0(p)= vp is the fermion dispersion. However, the Hamiltonian of the gapped phase,
corresponding to g(t)= g > 0, HLE, is not diagonal in terms of the right and left moving Fermi
fields. In the compact spinor notation, it reads

HLE =

∑
p

:9†(p) ·H(p) ·9(p) :, (12)

where

H(p)=

[
h̄ω0(p) h̄m

h̄m −h̄ω0(p)

]
, (13)

being m = vg. Nevertheless, HLE can be rendered diagonal by means of the following unitary
transformation:

9̃(p)=

[
ψc(p)
ψv(p)

]
=

[
cos θ(p) sin θ(p)

− sin θ(p) cos θ(p)

] [
ψr(p)
ψl(p)

]
, (14)

where

tan 2θ(p)=
m

ω0(p)
. (15)
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Thus the Hamiltonian of the gapped phase, in diagonal form, reads (after dropping an
unimportant constant that amounts to the ground state energy)

HLE =

∑
p

h̄ω(p)
[
: ψ†

c (p)ψc(p)−ψ
†
v (p)ψv(p) :

]
, (16)

where ω(p)=
√
ω0(p)2 + m2. We associate ψ†

v (p) (ψ†
c (p)) with the creation operator for

particles in the valence (conduction) band.
Before considering quantum quenches, let us briefly discuss some of the properties of the

ground states of the Hamiltonians H0 and HLE. In what follows, these states will be denoted as
|80〉 and |8〉, respectively. As mentioned above, the spectrum of H0 is gapless, and the fermion
occupancies in the ground state |80〉 are

nr(p)= 〈80|ψ
†
r (p)ψr(p)|80〉 = θ(−p), (17)

nl(p)= 〈80|ψ
†
l (p)ψl(p)|80〉 = θ(p). (18)

That is, all single-particle levels with negative momentum are filled. However, HLE has a gapped
spectrum and, therefore, when constructing its ground state, |8〉, only the levels in the valence
band (which have negative energy) are filled, whereas the levels in the conduction band remain
empty

nv(p)= 〈8|ψ†
v (p)ψv(p)|8〉 = 1, (19)

nc(p)= 〈8|ψ†
c (p)ψc(p)|8〉 = 0. (20)

3.2. Quench from the gapped to the gapless phase

The first situation we shall consider is when g(t)= gθ(−t) in equation (8), so that the spectrum
of the Hamiltonian abruptly changes from gapped to gapless (i.e. quantum critical). In the
following, we denote Hi ≡ HLE(t < 0)= HLE and Hf ≡ HLE(t > 0)= H0. The time evolution
of ψr,l for t > 0 is thus

ψr,l(p, t)= e±iω0(p)tψr,l(p). (21)

We first consider the zero temperature quench in this section, and postpone to section 5
the discussion of the more complicated finite-temperature case. In the zero temperature case
the initial state ρi = |8〉〈8|. Note that, in this state, 〈8|cos 2φ(x)|8〉 = 〈8|cos 2ϕ(x)|8〉 =

Re〈8|e−2iϕ(x)
|8〉 = −〈ψ†

r (x)ψl(x)〉 6= 0 (the minus sign stems from the eigenvalue of the
operator 0 = ηrηl), whereas in the ground state of H0, |80〉, the expectation value of the same
operator vanishes. Therefore, it behaves like an order parameter in equilibrium, and we can
expect that it exhibits interesting dynamics out of equilibrium. Indeed,

C(t)= 〈e−2iϕ(x,t)
〉 = −

1

L

∑
p

〈ψ†
r (p, t)ψl(p, t)〉 =

1

2L

∑
p

e−2iω0(p)t sin 2θ(p), (22)

where, to evaluate the expectation value, we have set T = 0 and therefore 〈ψ†
r (p)ψl(p)〉 =

−
1
2 sin 2θ(p), as follows from equations (14), (19) and (20). The above expression can be

readily evaluated by recalling that sin 2θ(p)= m/ω(p), which yields, in the L → ∞ limit,

C(t)= m
∫ +∞

0

dp

2π

cos 2ω0(p)t

ω(p)
=

( m

2πv

)
K0 (2mt)'

1

4v

√
m

π t
e−2 mt , (23)
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where K0 is the modified Bessel function. Thus we see that the ‘order parameter’ 〈cos 2ϕ(0, t)〉
decays exponentially at long times at T = 0. The decay rate is proportional to the gap between
the ground state (the initial state) and the first excited state of the initial Hamiltonian Hi = H .
The existence of this gap means, in particular, that correlations in the initial state between
degrees of freedom of the system are exponentially suppressed beyond a distance of the order
ξc ≈ v/m. Upon quenching, the evolution of the system is dictated by a critical Hamiltonian,
H0, that is, a Hamiltonian describing excitations that propagate ballistically along ‘light cones’
corresponding to the ‘trajectories’ x ± vt . Thus, as discussed by Calabrese and Cardy [9, 15],
the correlation length scale characterizing the initial state translates into an exponential decay
in time of the order parameter at long times. This exponential decay is also found (for the same
type of quench) in the semiclassical limit of the sGM (see section 4 below).

Next we shall consider the (equal-time) two-point correlation function of the same operator,
namely

G(x, t)= 〈e−2iϕ(x,t)e2iϕ(0,t)
〉. (24)

Using the fermionic representation of e2iϕ(x,t) and expanding in Fourier modes, we get

G(x, t)=
1

L2

∑
p1,p2,p3,p4

ei(p1−p2)xe−i[ω0(p1)+ω0(p2)−ω0(p3)−ω0(p4)]t〈ψ†
r (p1)ψl(p2)ψ

†
l (p3)ψr(p4)〉. (25)

Applying Wick’s theorem, there are three different contractions of the above four fermion
expectation values, which can be evaluated using equations (14), (19) and (20). This yields
the following contractions:

〈ψ†
r (p)ψ

†
l (p)〉 = 〈ψr(p)ψl(p)〉 = 0 (26)

〈ψ
†
l (p)ψr(p)〉 = 〈ψ†

r (p)ψl(p)〉 = −
1
2 sin 2θ(p), (27)

〈ψ†
r (p)ψr(p)〉 = sin2 θ(p), (28)

〈ψl(p)ψ
†
l (p)〉 = cos2 θ(p). (29)

Hence, in the thermodynamic limit (L → ∞), we obtain

G(x, t)= C(x, t) C(0, t)+ |
i

2
δ(x)+H(x, t)|2, (30)

where

H(x, t)=

∫ +∞

0

dp

2π
sin px

ω0(p)

ω(p)
e−a0 p

=
m

2πv
K1

(
m|x |

v

)
(31)

in the limit a0 → 0. Therefore, for |x | 6= 0,

G(x, t)=

( m

2πv

)2
(

[K0 (2 mt)]2 +

[
K1

(
m|x |

v

)]2
)
. (32)

Let us examine the behavior of this correlation function in the asymptotic limit where |x | �

ξc = v/m and 2vt � ξc. Since the Bessel functions decay exponentially for large values of their
arguments, the leading term in G(x, t) depends on whether t < |x |/2v or t > |x |/2v. Thus

G(x, t)'


m

16πvx
e−2m|x |/v, t > |x |/2v,

m

32πv2t
e−4mt , t < |x |/2v.

(33)
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These results are also in agreement with those obtained using a mapping to a boundary
conformal field theory by Calabrese and Cardy for general quantum quenches from a non-
critical to a critical state [9, 15].

3.3. Quench from the gapless to the gapped phase

We next consider the reverse situation of the one discussed in the previous subsection. In this
case, we set g(t)= gθ(t) in equation (8), i.e. the initial state is critical and corresponds to
the ground state of Hi = H0, whereas the time evolution is performed according to Hf = HLE.
We shall consider the same correlation functions as in the previous subsection and therefore it
is convenient in this case to obtain the time evolution of the operators ψr(p) and ψl(p), whose
action on the initial state is known (cf e.g. equations (17) and (18)). Once again, we first restrict
ourselves to the T = 0 case and defer the discussion of finite temperature effects to section 5.
We first note that the time-evolved Fermi operators can be related to the operators at t = 0 by
means of the following (time-dependent) transformation:

ψr(p, t)= eiHftψr(p)e
−iHft/h̄ = f (p, t)ψr(p)+ g∗(p, t)ψl(p), (34)

ψl(p, t)= eiHftψl(p)e
−iHft/h̄ = g∗(p, t)ψr(p)+ f ∗(p, t)ψl(p), (35)

where f (p, t)= cosω(p)t − i cos 2θ(p)sinω(p)t and g(p, t)= i sin 2θ(p)sinω(p)t . This
transformation can be shown to respect the anti-commutation relations characteristic of Fermi
statistics, and it is therefore a canonical transformation. Using equations (34) and (35), we can
now compute the decay of the order parameter operator e2iϕ(x,t). The calculation yields

C(x, t)= −
2

L

∑
p>0

Re
[

f ∗(p, t)g(p, t)
]
. (36)

In deriving the above expression, we have used that f (−p, t)= f ∗(p, t) and g(−p, t)=

g(p, t), which follow from cos 2θ(−p)= −cos 2θ(p) because cos 2θ(p)= ω0(p)/ω(p). Thus,
setting Re[ f ∗(p, t)g(p, t)] = −cos 2θ(p) sin 2θ(p) sin2ω(p)t and taking L → +∞, we find
that

C(x, t)= 2
∫ +∞

0

dp

2π

mω0(p)

[ω(p)]2
e−a0 p sin2 ω(p)t = A(ma0)+

m

2πv
ci(2mt), (37)

where ci is the cosine integral function. The first term is a non-universal constant that depends on
the short-distance cut-off a0 introduced above (cf equation (9)). For long times this expression
can be approximated by

C(x, t)' A(ma0)+
1

4πvt
sin 2mt + O(t−2). (38)

Hence we conclude that, when quenched from the critical (gapless) phase into the gapped phase,
the order parameter exhibits an oscillatory decay towards a (non-universal) constant value,
A(ma0).

Using similar methods the (equal-time) two-point correlation function, G(x, t)=

〈e−2iϕ(x,t)e2iϕ(0,t)
〉, can also be evaluated. The resulting expression can be cast in a form identical

to equation (30) of subsection 3.2. In the thermodynamic limit, we find that, in the present case,
the function H(x, t) takes the form

H(x, t)= −

∫
∞

0

dp

2π

{
−1 + [1 − cos 2ω(p)t]

m2

[ω(p)]2

}
e−a0 p sin px . (39)
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We have not been able to obtain a closed analytical expression for this function at all times.
However, in the t → +∞ limit, in which case the term in the integrand proportional to
cos 2ω(p)t oscillates very rapidly and therefore yields a vanishing contribution, an analytical
expression can be obtained. Upon performing the momentum integral, we obtain the following
result for large |x | (after taking the limit a0 → 0):

H(x, t → ∞)≈
−4v2

2πm2|x |3
. (40)

Hence, we obtain the following asymptotic behavior of the two-point correlation for t → ∞:

lim
t→+∞

G(x, t)= [A(ma0)]
2 +

4v4

(2π)2m4x6
. (41)

This result is clearly different from the equilibrium behavior of the same correlation function in
the gapped phase, where it decays exponentially to a constant [31, 32]. Instead, when the system
is quenched from the gapless into the gapped phase, we find that both the order parameter and
the two-point correlation function (equations (38) and (41)) decay algebraically to constant
(non-universal) values.

4. The semiclassical limit

4.1. Introductory remarks

A good approximation to the sGM (cf equation (3)) can be obtained in the limit where κ � 1,
which corresponds to the K � 1 limit in the original notation of equation (1). In this limit, we
can expand the cosine term in (3) about one of its minima, e.g. ϕ = 0. Retaining only the leading
quadratic term yields the following quadratic Hamiltonian for the boson field ϕ(x):

HgG ' Hsc =
h̄v

2π

∫
dx
[
: (∂xϕ(x))

2 + K (∂x ϕ̃(x))
2 :
]

+
h̄vg(t)κ2

2πa2−κ2/2
0

∫
dx : ϕ2(x) : . (42)

Within this approximation, the problem of studying a quantum quench in the sGM becomes
akin to the general problem studied in [26]. To see this, let us first expand ϕ(x) in Fourier
modes:

ϕ(x)=
φ0

√
K

+ i
πx

√
K L

δN +
1

2

∑
q 6=0

(
2πv

ω0(q)L

)1/2 [
eiqxb(q)+ e−iqxb†(q)

]
, (43)

where ω0(q)= v|q|; the b-operators introduced above obey the standard Heisenberg algebra:[
b(q), b†(q ′)

]
= δq,q ′, (44)

commuting otherwise. The first two terms in equation (43) are the so-called zero modes,
whose dynamics is only important at finite L . In what follows we restrict our attention to
the thermodynamic limit (L → ∞) and therefore neglect the dynamics of those zero modes.
Introducing (43) into (42), the Hamiltonian takes the general form

H(t)=

∑
q

h̄ [ω0(q)+ m(q, t)] b†(q)b(q)+
1

2

∑
q

h̄g(q, t)
[
b(q)b(−q)+ b†(q)b†(−q)

]
,

(45)
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with the following identifications: ω0(q)= v|q| and g(q, t)= m(q, t)= 2vg(t)κ2/|q|a2−κ2/2
0 .

As in the study of the LE limit, we shall assume that g(t)= gθ(−t), which corresponds to a
quench from the gapped to a gapless phase4, or g(t)= gθ(t), which corresponds to a quench
from the gapless to the gapped phase. Following the procedure described in the appendix
of [26], the quench dynamics of this Hamiltonian can be solved by the following canonical
transformation (indeed, the bosonic version of equations (34) and (35):

b(q, t)= f (q, t) b(q)+ g∗(q, t) b†(−q), (46)

where

f (q, t)= cosω(q)t − i sinω(q)t cosh 2β(q), (47)

g(q, t)= i sinω(q)t sinh 2β(q). (48)

Introducing m2
= 4 gv2κ2/a2−κ2/2

0 , which is the gap in the frequency spectrum of the gapped
phase and setting m(q)= g(q)= m2/2ω0(q), the parameter β(q) satisfies

tanh 2β(q)=
m2/2

ω2
0(q)+ m2/2

, (49)

and the frequency

ω(q)=

√
ω0(q)2 + m2 (50)

is the dispersion of the excitations in the gapped phase.

4.2. Quench from the gapped to the gapless phase

Let us begin by discussing the situation where g(t)= gθ(−t). In this case, the initial state is the
ground state of the following Hamiltonian (we omit the zero-mode part henceforth):

Hi = Hsc =

∑
q 6=0

h̄ω(q) a†(q)a(q), (51)

where the operators a(q) and a†(q) are bosonic operators related to b(q) and b†(q) by means
of the following canonical transformation:

a(q)= coshβ(q) b(q)+ sinhβ(q) b†(−q), (52)

with β(q) satisfying equation (49). At t = 0 the Hamiltonian abruptly changes to Hf = H0,
which is diagonal in the b(q) and b†(q) basis, namely

H0 =

∑
q 6=0

h̄ω0(q) b†(q)b(q). (53)

In this case the evolution of the expectation value of the order parameter operator e−2iφ(x)
=

e−iκϕ(x) or its correlation functions can be obtained from a knowledge of the two-point
(equal time) correlation function out of equilibrium for the boson field ϕ(x), i.e. F(x, t)=

〈ϕ(x, t)ϕ(0, t)〉 − 〈ϕ2(0, t)〉, where the expectation value is taken over the ground state of
Hsc but the time evolution is dictated by H0. To compute this object, we first insert into the

4 This case was studied earlier by Calabrese and Cardy in [15], although not as a limit of the sGM, and therefore
they considered the quench dynamics of different observables.
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expectation value the Fourier expansion of ϕ(x), equation (43), and use equation (46). Thus, we
arrive at

〈ϕ(x, t)ϕ(0, t)〉=−
1

4

∑
q 6=0

(
2πv

ω0(q)L

)
×

[
sinh 2β(q) cos (qx−2ω0(q)t)−eiqx sinh2 β(q)−e−iqx cosh2 β(q)

]
. (54)

Using this result, let us consider the behavior of the order parameter following the quench.

Taking into account that 〈e−2iφ(0,t)
〉 = 〈e−iκϕ(0,t)

〉 = e−
κ2
2 〈ϕ2(0,t)〉, we see that 〈ϕ2(0, t)〉 must be

evaluated in closed form using equation (54). Before performing any manipulation of this
expression, it is convenient to subtract the constant 〈ϕ2(0, 0)〉, which is formally infinite (i.e. it
depends on the short distance cut-off, a0). Thus, taking the thermodynamic limit where L → ∞,
we obtain

〈ϕ2(0, t)〉 − 〈ϕ2(0, 0)〉 =
1

2

∫ +∞

0

d(qv)

ω(q)

[(
ω(q)

ω0(q)

)2

− 1

]
sin2 ω0(q)t. (55)

Inserting the expressions for ω(p) and ω0(p) in the above equation, we obtain

〈ϕ2(0, t)〉 − 〈ϕ2(0, 0)〉 = − f (2mt/h̄), (56)

where f (z) is defined as

f (z)= 1 +
1

2
G21

13

(
z2

4

∣∣∣∣ 3/2
0 1 1/2

)
, (57)

G21
13 being the Meijer G function [39]. Using the asymptotic expansion for this function,

f (z)≈ 1 −
π |z|

2 ; hence, the long-time behavior of the order parameter is

〈e−2iφ(0,t)
〉 = 〈e−2iκϕ(0,t)

〉 = 〈e2iφ(0,0)
〉eκ

2/8(1−πmt). (58)

We next examine the behavior of the two-point correlation function of the same (order-
parameter) operator,

G(x, t)= 〈e2iφ(x,t)e−2iφ(0,t)
〉 = e

κ2
2 F(x,t), (59)

where we have defined F(x, t)= 〈ϕ(x, t)ϕ(0, t)〉 − 〈ϕ2(0, t)〉. At zero temperature, with the
help of equation (54), we find that

F(x, t)−F(x, 0)= −
m2

4

∫
∞

0

d(vq)

[ω0(q)]2ω(q)
(1 − cos qx)(1 − cos 2ω0(q)t), (60)

where

F(x, 0)= −
1

2

∫
∞

0

d(vq)

ω(q)
(1 − cos qx) e−qa0, (61)

with a0 being the short-distance cutoff. Evaluating the integrals

F(x, t)−F(x, 0)= f (mx/v)+ f (2mt)−
f [m(x/v + 2t)] + f [m(x/v− 2t)]

2
, (62)

where f (z) has been defined in equation (57). Thus, asymptotically (for max{|x |/2v, t} �

m−1),

G(x, t)= eκ
2G(x, 0)×

{
e−κ2πm|x |/2v, for t > |x |/2v,

e−κ2πmt , for t < |x |/2v,
(63)
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where G(x, 0) describes the correlations in the initial (gapped ground) state and exhibits the
following asymptotic behavior:

G(x, 0)' B(a0)
(

1 − κ2 πv

mx
e−m|x |/v

)
, (64)

where B(a0) is a non-universal prefactor. Thus we see that the asymptotic form of G(x, t)
(equation (63)), as well as that of the order parameter, equation (58), has the same form as the
results found limit the LE limit, and also agree with the results of Calabrese and Cardy [9, 15]
based on a mapping to boundary conformal field theory.

4.3. Quench from the gapless to the gapped phase

In this case, the system finds itself initially in the ground state of Hi = H0, and suddenly
(at t = 0) the Hamiltonian is changed to Hf = Hsc. For this situation, it is convenient to
obtain the evolution of the observables from the time-dependent canonical transformation of
equation (46), where β(q) and ω(q) are given by equations (49) and (50), respectively. In this
case,

〈ϕ(x, t)ϕ(0, t)〉 =
1

4

∑
q 6=0

(
2πv

ω(q)L

)[
sinh 2β(q) cos (qx − 2ω(q)t)

+eiqx sinh2 β(q)+ e−iqx cosh2 β(q)
]
. (65)

As in the previous subsection, 〈e−2iφ(x)
〉 = e−

κ2
2 〈ϕ2(0,t)〉, and using equation (65), we find that

〈ϕ2(0, t)〉 − 〈ϕ2(0, 0)〉 =
1

2

∫
∞

0

d(vq)

ω0(q)

[(
ω0(q)

ω(q)

)2

− 1

]
sin2 ω(q)t. (66)

Note, interestingly, that this result can be obtained from equation (55) by exchanging ω0(q) and
ω(q). However, when evaluating the integral we find that 〈ϕ2(0, t)〉 = +∞, for all t > 0, due to
the presence of infrared divergences that are not cured by the existence of a gap in the spectrum

of Hf = Hsc. Thus, we conclude that 〈e−2iφ(x)
〉 = e−

κ2
2 〈ϕ2(0,t)〉 vanishes at all t > 0.

The above result for the evolution of the order parameter seems to indicate that the system
apparently remains critical after the quench. This conclusion is also supported by the behavior
of the two-point correlation function of the operator e2iφ(x,t): let G(x, t)= 〈e2iφ(x,t)e−2iφ(0,t)

〉 =

eκ
2F(x,t), where F(x, t)= 〈ϕ(x, t)ϕ(0, t)〉 − 〈ϕ2(0, t)〉. Using equations (46) and (43), we arrive

at the following result (at zero temperature, and for L → +∞):

F(x, t)−F(x, 0)=
m2

4

∫
∞

0

d(vq)

ω0(q) [ω(q)]2 (1 − cos qx) (1 − cos 2ω(q)t), (67)

where

F(x, 0)= −

∫
∞

0

d(vq)

2ω0(q)
(1 − cos qx)e−qa0 . (68)

To illustrate the above point about the apparent ‘criticality’ of the (asymptotic) non-equilibrium
state, we can analyze the behavior of the two-point correlation function, G(x, t), in two limiting
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cases, for t = 0 and t → +∞. At t = 0, the correlation function, as obtained from equation (68),
reads

G(x, 0)= A(a0)
(a0

x

)2κ2

, (69)

where A(a0) depends on the short-distance cut-off a0. Thus, the correlations are power-law
because the initial state is critical. In the limit where t → +∞, the part of the integral
in equation (67) containing the term cos 2ω(q)t oscillates very rapidly and upon integra-
tion, averages to zero. The remaining integral can be done with the help of tables [39],
yielding

F(x, t → ∞)−F(x, 0)= −

√
π

2
G22

04

(
m2x2

4v2

∣∣∣∣ 1 1
1 1 0 1/2

)
, (70)

where G22
04 is a Meijer function. Using the asymptotic behavior of the Meijer function [39], we

obtain

lim
t→+∞

G(x, t)= B(a0)

(
2v

mx

)κ2

, (71)

with B(a0) being a non-universal constant. Thus, although initially the system is critical and
therefore correlations at equilibrium decay as a power law with exponent 2κ2, when the system
is quenched into a gapped phase (where equilibrium correlations exhibit an exponential decay
characterized by a correlation length ξc ≈ v/m), the correlations remain power law, within
the semiclassical approximation. The exponent turns out to be smaller, equal to κ2, which is
half of the exponent in the initial (gapless) state. In other words, within this approximation,
it seems that the system keeps memory of its initial state, and behaves as if it was critical
also after the quench. This behavior seems somewhat different from the results obtained for
the same type of quench in the LE limit, where both the order parameter and the correlations
for t + ∞ approach a constant value, A(ma0) (unless the non-universal amplitude A(ma0)= 0,
which seems to require some fine-tuning). It is not clear at the moment whether the differences
found here between the LE and the semi-classical limits are due to a breakdown of the
quasi-classical approximation, which neglects the existence of solitons and anti-solitons in the
spectrum of the sGM, or due to a qualitative change in the dynamics as one moves away from
the LE limit. To clarify this issue will require further investigation with more sophisticated
methods.

5. Dynamics in the Luther–Emery limit at finite temperatures

In this section, we shall consider that the initial state of the system corresponds to the thermal
mixed state, which describes a sGM system in contact with an energy reservoir (i.e. the
canonical ensemble) at a temperature T = β−1. The state is thus mathematically described by a
density operator ρi = e−H i/T /Z i. We shall assume that the coupling to the thermal bath is turned
off at t = 0, and the system subsequently evolves unitarily in isolation according to Hf. We shall
consider only the LE limit of the sGM, where exact results can be obtained at all temperatures
within the sGM model. The latter is not true in the semiclassical limit discussed above because
this approximation only captures the breather part of the spectrum and not the solitonic part.
We shall therefore not consider finite temperature quenches in this limit here.

New Journal of Physics 12 (2010) 055019 (http://www.njp.org/)

http://www.njp.org/


15

5.1. Quench from massive to massless

Consider first the quench from the gapped to the gapless phase. The initial (gapped) Hamiltonian
Hi = HLE is thus diagonal in the valence and conduction fermion basis and therefore
immediately follows

〈ψ†
v (p)ψv(p

′)〉 = fF[−ω(p)]δpp′, (72)

〈ψ†
c (p)ψc(p

′)〉 = fF[ω(p)]δpp′, (73)

〈ψ†
v (p)ψc(p

′)〉 = 0. (74)

Here fF is the Fermi factor and

〈· · ·〉 = Tr{e−βHi · · ·}. (75)

The final Hamiltonian Hf = H0; thus, using equations (72)–(74), we can compute the finite
temperature versions of equations (27)–(29):

〈ψ
†
R(p)ψR(p)〉 = cos2 θp fF[ω(p)] + sin2 θp fF[−ω(p)], (76)

〈ψ
†
L(p)ψL(p)〉 = sin2 θp fF[ω(p)] + cos2 θp fF[−ω(p)], (77)

〈ψ
†
R(p)ψL(p)〉 = 〈ψ

†
L(p)ψR(p)〉 = −

1

2
sin 2θp tanh

βω(p)

2
. (78)

Note that these averages automatically vanish if the fermion operators are evaluated at different
values of p because of momentum conservation. The time evolution is again dictated by
Hf = H0 as in the zero-temperature case.

Let us next consider some interesting observables. We begin with the order parameter,
which reads

C(t;β)= m
∫

∞

0

dp

2π

cos 2ω0(p)t

ω(p)
tanh

h̄βω(p)

2
. (79)

This integral can be transformed into an infinite sum by expanding tanhβε/2 in powers of e−βε

and integrating term by term. We thus obtain the following low-temperature expansion:

C(t;β)=
m

2πv

∑
n∈Z

(−1)n K0

[√
(2 mt)2 + (nh̄βm)2

]
. (80)

Since the function K0 decays exponentially for large values of its argument, from this expression
we see that when the temperature is decreased, less terms are needed to approximate the sum.
In particular, at zero temperature (β → ∞), only the n = 0 term contributes and we recover the
zero temperature result of equation (23). At finite but low temperatures, the asymptotic behavior
at long times is an exponential decay where the characteristic time decay is fixed by the gap.
However, at higher temperatures, more terms contribute to the sum, whereas the alternating sign
leads to some partial cancellations. As a result, we expect a faster decay in time of the order
parameter. To further analyze the long-time behavior in this regime, we shall use an identity of
Bessel functions (see equation (A.1)) which allows us to obtain the following high-temperature
expansion:

C(t;β)=
m

2v

∑
l∈Z

exp
[
−

2t
h̄β

√
(h̄βm)2 +π2(2l + 1)2

]
√
(h̄βm)2 +π2(2l + 1)2

. (81)
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Note that, for this expansion, the higher the temperature, the smaller the number of terms that
need to be retained to accurately approximate the sum. In particular, in the infinite temperature
limit, βmh̄ � 1, only the l = 0 terms contribute and thus the decay in time is exponential:

C(t;β)≈
m

2πv
exp[−t/τc] , h̄βm � 1, (82)

but now the characteristic decay time τc is fixed by the inverse temperature:

τc =
h̄β

2π
. (83)

Thus, to summarize, the asymptotic behavior of the order parameter following a quench from
the gap to the gapless phase is described by an exponential decay both at very low and very
high temperatures. At very low temperatures, the characteristic decay time is given by the
frequency gap, m, but as the temperature of the initial state is increased, the characteristic time
is determined by the temperature. The behavior for intermediate temperatures is a crossover
between these two types of exponentially decaying behavior. Moreover, it is also worth
mentioning that the exponential decay at large temperatures is characteristic of a critical theory
at finite temperatures. Indeed, in the sGM, we expect that, as the temperature is raised well
above the gap energy scale, h̄m, the properties of the system will become indistinguishable
from those of a critical system.

As for the finite-temperature correlation function, it can be again cast in the same form
as the zero temperature case, equation (30), with the function H(x, t;β) having the following
t → +∞ limit:

lim
t→+∞

H(x, t;β)=

∫
∞

0

dp

2π

ω0(p)

ω(p)

[
tanh

h̄βω(p)

2

]
sin px . (84)

Using the same technique as for the order parameter, we evaluate this function as

lim
t→+∞

H(x, t;β)=
mx

2πv2

∞∑
n=1

(−1)n
K1

(
m
√

x2/v2 + n2h̄2β2
)

√
x2/v2 + n2h̄2β2

. (85)

The reasoning is the same as before: at very low temperatures, only the term with n = 0
contributes, and we recover the zero temperature expression. However, as the temperature
increases, more terms become important. We can use the dual expression equation (A.2), which
when applied to equation (85) yields

lim
t→+∞

H(x, t;β)=
1

2vh̄β

∑
l∈Z

exp

[
−

x

vh̄β

√
(mh̄β)2 +π2(2l + 1)2

]
. (86)

This function decays exponentially for long distances (only the l = 0 term contributes at high
temperatures), with a characteristic correlation length that is fixed by the temperature of the
initial state:

lim
t→+∞

H(x, t;β)'
1

2vh̄β
e−|x |/ξ , ξ =

vh̄β

π
. (87)

Introducing these results in (the finite temperature equivalent of) equation (30), we obtain
an expression whose asymptotic behavior again depends on whether |x |> 2vt or |x |< 2vt
(with correlation time/lengths given by m or T depending on the temperature range). Thus, the
correlations at finite temperature also will exhibit the so-called ‘light-cone’ effect [9, 15].
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5.2. Quench from the gapless to the gapped phase

We next consider that the system is quenched from the gapless phase to the gapped phase. Thus
we need to assume that the system was initially described by Hi = HLE and in contact with an
energy reservoir at temperature T = β−1. The following expectation values (understood over
the initial thermal ensemble) will be required in the calculations to follow:

〈ψ
†
R(p)ψR(p)〉 = fF[ω0(p)], (88)

〈ψ
†
L(p)ψL(p)〉 = fF[−ω0(p)], (89)

〈ψ
†
R(p)ψL(p)〉 = 〈ψ

†
L(p)ψR(p)〉 = 0 (90)

and hence

〈ψ†
v (p)ψv(p)〉 =

1

2

(
1 + cos 2θp tanh

βω0(p)

2

)
, (91)

〈ψ†
c (p)ψc(p)〉 =

1

2

(
1 − cos 2θp tanh

βω0(p)

2

)
. (92)

Thus, the time evolution of the order parameter can be obtained and reads

C(t;β)= 2
∫

∞

0

dp

2π

mω0(p)

ω(p)2
tanh

h̄βω0(p)

2
e−a0 p sin2 ω(p)t. (93)

As t → +∞ this function approaches a non-universal constant that depends on the energy
cut-off a0 and the temperature. At high temperatures,

C(t, β)= A(ma0, β)+ h̄β

√
πm

16πvt3/2
sin
(

2 mt +
π

4

)
. (94)

Thus, after the sudden quench at t = 0 from a high-temperature state in the critical regime to
the gapped phase, the order parameter shows an oscillatory decay towards a constant value.
However, the exponent of the decaying law is different from the decaying exponent in the case
of a quench from a zero (or low) temperature state. The whole picture is the following: the
order parameter exhibits an oscillatory decaying low as t−3/2 for times smaller than a time scale
fixed by the temperature, where there is a crossover to a t−1/2 behavior characteristic of low
temperatures.

Concerning the two-point correlation function, it can again be recast as in equation (30)
with the function H(x, t;β) being given by

H(x, t;β)= −

∫
∞

0

dp

2π
sin px

{
−1 + [1 − cos 2ω(p)t]

m2

ω(p)2

}
tanh

h̄βω0(p)

2
e−a0 p. (95)

At long times, the cosine within the integral oscillates very rapidly, yielding a vanishing
contribution. The remaining integral can be evaluated using the Cauchy theorem, resulting in an
infinite sum over positive odd Matsubara frequencies. The sum can be performed, yielding

H(x, t → ∞)= −
m

4v

1

π
e−πx/vh̄β

[
8

(
e−2πx/vh̄β, 1,

1

2
+

h̄βm

2π

)
−8

(
e−2πx/vh̄β, 1,

1

2
−

h̄βm

2π

)]
+

1

2h̄βv
cosech

(
πx

h̄vβ

)
−

m

4v
e−mx/v tan

h̄βm

2
, (96)
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where 8(x, y, z) is the Lerch function [39]. Likewise, the long-distance behavior is dominated
by the lowest (Matsubara) frequency term:

H(x, t → ∞)≈ −
1

vh̄β

[
π 2

(h̄βm)2 −π 2

]
e−πvx/h̄β

−
m

4v
e−mx/v tan

h̄βm

2
. (97)

At long distances, this function decays exponentially, but two competing length scales appear:
v/m and vh̄β/π . The largest sets the characteristic length of the decay.

6. Long-time dynamics and the generalized Gibbs ensemble

It was recently pointed out by Rigol et al [14] that, at least for certain observables like the
momentum distribution or the density, the asymptotic (long-time) behavior of an integrable
system following a quantum quench can be described by adopting the maximum entropy (also
called ‘subjective’) approach to statistical mechanics, pioneered by Jaynes [40, 41]. Within this
approach, the equilibrium state of a system is described by a density matrix that extremizes
the von Neumann entropy, S = −Trρ ln ρ, subject to all possible constraints provided by the
integrals of motion of the Hamiltonian of the system. In the case of an integrable system, if {Im}

is a set of certain (but not all of the possible) independent integrals of motion of the system,
this procedure leads to a ‘generalized’ Gibbs ensemble, described by the following density
matrix:

ρgG =
1

ZgG
e−

∑
m λm Im , (98)

where ZgG = Tr e−
∑

m λm Im . The values of the Lagrange multipliers, λm , must be determined from
the condition that

〈Im〉gG = Tr [ρ0 Im] = 〈Im〉, (99)

where ρ0 describes the initial state of the system, and 〈· · ·〉gG stands for the average taken
over the generalized Gibbs ensemble, equation (98). Although ρi = |8(t = 0)〉〈8(t = 0)| in
the case of a pure state, as was first used in [14], nothing prevents us from taking ρ0 to be an
arbitrary mixed state and, in particular, a thermal state characterized by an absolute temperature
T . In this case, the Lagrange multipliers will depend on T or any other parameter that defines
the initial state.

Rigol et al numerically tested the above conjecture by studying the quench dynamics of a
1D lattice gas of hard-core bosons (see [14] for more details). One of us showed analytically [11]
that correlations of the Luttinger model also relax to averages taken over this ensemble. This
result for the Luttinger model was extended to include finite temperature fluctuations in the
initial state in [26]. The question that naturally arises then is whether the family of integrable
models studied in this work (see equation (45) and their fermionic equivalences of equation (12)
and (13)) relax in agreement with the mentioned conjecture. In other words, does the average
〈O〉(t) at long times relax to the value 〈O〉gG = Tr ρgG O , for any of the correlation functions
considered previously? In what follows, we shall address this question by analyzing quantum
quenches in the sGM at zero temperature. The generalization at finite temperatures should be
straightforward, as discussed in [26].
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6.1. Quench from the gapped to the gapless phase in the Luther–Emery limit

In this case, the type evolution of the system is performed by H0 (cf equation (11)), which
is diagonal in the operators nα(p)= : ψ†

α(p)ψα(p) : (α = r, l). Thus, the generalized Gibbs
ensemble is defined by the following set of integrals of motion Im → Iα(p)= nα(p). We
see immediately that the fact that this ensemble is diagonal in nF

α (p) means that the order
parameter, 〈e−2iϕ(x)

〉gG = 〈ψr(x)ψl(x)〉gG = 0, which agrees with the t → +∞ limit of the order
parameter, was shown in section 3 to exhibit an exponential decay to zero. However, the two-
point correlator of e2iϕ(x) has a non-vanishing limit for t → +∞. Thus, our main concern here
will be the calculation of the correlation function:

〈e−2iϕ(x)e2iϕ(0)
〉gG = 〈ψ†

r (x)ψl(x)ψ
†
l (0)ψr(0)〉gG (100)

=

∑
p1, p2,p3,p4

ei(p1−p2)x

L2
〈ψ†

r (p1)ψl(p2)ψ
†
l (p3)ψr(p4)〉gG. (101)

Since the ensemble is diagonal in the chirality index, α, as well as the momentum, p, an
evaluation of the above expression can be carried out by noting that

〈ψ†
α(p)ψα(p

′)〉gG =
Tr e−

∑
p,α′ λα′ (p)Iα′ (p)ψ†

α(p)ψα(p)

Tr e−
∑

p,α′ λα′ (p)Iα′ (p)
=

δp,p′

eλα(p) + 1
, (102)

where the Lagrange multipliers λ(q) can be related to the values of the same expectation values
in the initial states by imposing their conservation, that is,

〈ψ
†
l (p)ψl(p)〉gG =

1

eλl (p) + 1
= 〈ψ

†
l (p)ψl(p)〉 = cos2 θ(p), (103)

〈ψ†
r (p)ψr(p)〉gG =

1

eλr (p) + 1
= 〈ψ†

r (p)ψr(p)〉 = sin2 θ(p). (104)

Hence,

〈ψ†
r (p1)ψl(p2)ψ

†
l (p3)ψr(p4)〉gG = 〈ψ†

r (p1)ψr(p4)〉gG × 〈ψl(p2)ψ
†
l (p3)〉gG (105)

= δp1,p4δp2,p3 sin2 θ(p1)
(
1 − cos2 θ(p2)

)
(106)

= δp1,p4δp2,p3 sin2 θ(p1) sin2 θ(p2). (107)

Introducing the last expression into equation (101) yields

〈e−2iϕ(x)e2iϕ(0)
〉gG =

∣∣∣∣∣ 1

L

∑
p

eipx sin2 θ(p)

∣∣∣∣∣
2

(108)

and using that sin2 θ(p)= (1 − cos2 2θ(p))/2 and cos 2θ(p)= ω0(p)/
√
ω2

0(p)+ m2, we find
that (for x 6= 0)

〈e−2iϕ(x)e2iϕ(0)
〉gG =

( m

2πv

)2
[

K1

(
m|x |

v

)]2

, (109)

which is equal to the t → +∞ limit of equation (32).

6.2. Quench from the gapless to the gapped phase in the Luther–Emery limit

In this case the initial state is the gapless ground state of H0, equation (11), whereas the
Hamiltonian that performs the time evolution has a gap in the spectrum and it is diagonal in
the basis of the ψv(p) and ψc(p) Fermi operators (cf equation (16)). Therefore, the conserved
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quantities are

Iv(p)= nv(p)= ψ†
v (p)ψv(p), (110)

Ic(p)= nc(p)= ψ†
c (p)ψc(p). (111)

The associated Lagrange multipliers (at zero temperature), λv(p) and λc(p), can be obtained by
equating 〈Iv,c(p)〉gG = 〈9(0)|Iv,c(p)|9(0)〉. This yields

〈Iv(p)〉gG =
1

eλv(p) + 1
= ϑ(−p) sin2 θ(p)+ϑ(p) cos2 θ(p), (112)

〈Ic(p)〉gG =
1

eλc(p) + 1
= ϑ(−p) cos2 θ(p)+ϑ(p) sin2 θ(p), (113)

where ϑ(p) denotes the step function. Using these expressions we next proceed to compute the
expectation values of the following observables:

6.2.1. Order parameter. We start by computing the order parameter

〈e−2iϕ(x)
〉gG = 〈ψ

†
R(x)ψL(x)〉 =

1

2L

∑
p

sin 2θ(p)
[
〈Ic(p)〉gG − 〈Iv(p)〉gG

]
, (114)

and by using equations (112) and (113),

〈e−2iϕ(x)
〉gG = −

1

L

∑
p>0

sin 2θ(p) cos 2θ(p)= −

∫
∞

0

dp

2π

mω0(p)

ω2(p)
e−pa0 = A(ma0), (115)

where we have assumed that cos 2θ−p = −cos 2θp; A(ma0) is the non-universal constant
introduced in section 4.3. This result agrees with the one obtained in section 4.3 for the order
parameter in the limit t → +∞.

6.2.2. Two-point correlation function. We next consider the two-point correlator of the order
parameter, namely

〈e2iϕ(x)e2iϕ(0)
〉gG =

1

L2

∑
p1, p2,p3,p4

ei(p1−p2)x〈ψ†
r (p1)ψl(p2)ψ

†
l (p3)ψr(p4)〉gG. (116)

The calculation of the average in this case is slightly more involved, but it can be performed by
resorting to a factorization akin to Wick’s theorem. This is applicable only in the thermodynamic
limit, as it neglects terms in which the four momenta of the above expectation value are equal.
These terms yield contributions of O(1/L) compared to the others. By factorizing as dictated
by Wick’s theorem, the only non-vanishing terms are

〈ψ†
r (p1)ψl(p2)ψ

†
l (p3)ψr(p4)〉gG = −δp1 p4δp2 p3〈ψ

†
r (p1)ψr(p4)〉gG〈ψ

†
l (p3)ψl(p2)〉gG

+δp1 p2δp4 p3〈ψ
†
r (p1)ψl(p2)〉gG〈ψ

†
l (p3)ψr(p4)〉gG. (117)

By using

〈ψ†
r (p)ψr(p)〉gG =

1
2ϑ(p) sin2 2θ(p)+ϑ(−p)

(
1 −

1
2 sin2 2θ(p)

)
, (118)

〈ψ
†
l (p)ψl(p)〉gG =

1
2ϑ(−p) sin2 2θ(p)+ϑ(p)

(
1 −

1
2 sin2 2θ(p)

)
, (119)

〈ψ
†
l (p)ψr(p)〉gG = 〈ψ†

r (p)ψl(p)〉gG = −
1
2 sin 2θ(p) cos 2θ(p) sign(p), (120)
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the average over the generalized Gibbs ensemble of the four Fermi fields on the right-hand
side of equation (116) can be computed and yields the following expression for the two-point
correlation function (up to terms of O(1/L2)):

〈e2iϕ(x)e−2iϕ(0)
〉gG =

∣∣∣∣∣∣− 1

L

∑
p>0

sin 2θ(p) cos 2θ(p)

∣∣∣∣∣∣
2

+

∣∣∣∣∣ 1

L

∑
p

eipx

[
1

2
ϑ(p) sin2 2θ(p)+ϑ(−p)

(
1 −

1

2
sin2 2θp

)]∣∣∣∣∣
2

(121)

The first term in the rhs of the above expression is just 〈e2iϕ(x)
〉gG〈e−2iϕ(0)

〉gG (cf equation (115)),
whereas the first term in the right-hand side can be written as∣∣∣∣∣ 1

L

∑
p

eipx

[
θ(−p)+

1

2
sign(p)sin22θp

]∣∣∣∣∣
2

=

∣∣∣∣∣∣ 1

L

∑
p>0

e−ipx +
i

L

∑
p>0

sinpx
m2

ω2(p)

∣∣∣∣∣∣
2

(122)

=

∣∣∣∣∣∣ 1

L

∑
p>0

e−ipx + lim
t→+∞

H(x, t)

∣∣∣∣∣∣
2

, (123)

that is, it coincides with the t → +∞ limit of the second term in the right-hand side of
equation (30) in section 3.3 (the function H(x, t) is defined in equation (39)).

6.3. Quench from the gapless to the gapped phase in the semi-classical limit

In this case the Hamiltonian performing the time evolution is gapless (H0) and thus diagonal in
the b-operators. Hence, the conserved quantities are

I (q)= b†(q)b(q). (124)

The Lagrange multipliers of the corresponding generalized Gibbs density matrix are fixed from
the condition

〈I (q)〉gG =
1

eλ(q) − 1
= 〈8(0)|b†(q)b(q)|8(0)〉 (125)

= sinh2 β(q), (126)
where β(q) is defined by equation (49). Hence, using this result, we next proceed to compute the
order parameter and the two-point correlation function. We first note that the order parameter
vanishes in the generalized Gibbs ensemble since 〈e−2iφ(x)

〉gG = e−2i〈φ2(0)〉gG and 〈φ2(0)〉gG =

κ2

4 〈ϕ2(0)〉 is divergent in the L → +∞ limit (see below). This agrees with the result found in
section 4.2, where it was found that the order parameter decays exponentially in time. Thus, in
what follows, we shall be concerned with the two-point correlation function.

6.3.1. Two-point correlation function. Since 〈e−2iφ(x)e2iφ(0)
〉gG = e−

κ2
2 C

gG(x), where C gG(x)=

〈ϕ(x)ϕ(0)〉gG − 〈ϕ2(0)〉gG. In order to obtain this correlator, we introduce the Fourier expansion
of ϕ(x) (ignoring the zero-mode part)

ϕ(x)=
1

2

∑
q 6=0

(
2πv

ω0(q)L

)1/2

eiqx [b(q)+ b†(−q)], (127)
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into the expectation value, and using (126) to evaluate the averages in the generalized Gibbs
ensemble, we find that, in the thermodynamic limit,

〈ϕ(x)ϕ(0)〉gG =

∫
∞

0

d(vq)

4ω0(q)
cos qx cosh 2β(q), (128)

and therefore

CgG(x)= 〈ϕ(x)ϕ(0)〉gG − 〈ϕ2(0)〉gG = −

∫
∞

0

d(vq)

ω0(q)
cosh 2β(q) (1 − cos qx) (129)

= C(x, 0)−
m2

4

∫ +∞

0

d(vq)

ω(q) [ω0(q)]
2 (1 − cos qx), (130)

where C(x, 0)≡ C(x, t = 0) is defined in equation (61). Comparing the last result with
equation (60) in the limit where t → +∞, we found that they are identical.

6.4. Quench from the gapless to a gapped phase

In this case, the Hamiltonian that performs the time evolution is gapped, whereas the initial state
is gapless. Thus, in contrast to the previous case, the Hamiltonian that performs the evolution
is diagonal in the a-operators and therefore the conserved quantities are I (q)= a†(q)a(q). The
corresponding Lagranges (at zero temperature) are fixed from the condition:

〈I (q)〉gG =
1

eλ(q) − 1
= 〈8(0)|a†(q)a(q)|8(0)〉 (131)

= sinh2 β(q), (132)

where β(q) is given by equation (49).
In order to obtain the one- and two-point correlation functions of e2iφ(x)

= e2iκϕ(x), we first
need to write the ϕ(x) field in terms of the a-operators. Using the canonical transformation
equation (52),

ϕ(x)=
1

2

∑
q 6=0

(
2π

ω(q)L

)1/2

eiqx [a(q)+ a†(−q)]. (133)

Hence, since 〈e−2iφ(x)
〉gG = 〈e−iκϕ(x)

〉gG = e−
κ2
2 〈ϕ2(0)〉gG and 〈ϕ2(0)〉gG is logarithmically divergent

in the thermodynamic limit (see the expressions below), we find that 〈e−iκϕ(x)
〉gG = 0. This result

is in agreement with the one found in section 4.3 for the order parameter.

6.4.1. Two-point correlation function. Next we consider the two-point correlation function of
the same operator, namely 〈e−2iφ(x)e2iφ(0)

〉gG = e−(κ
2/2)CgG(x), where CgG(x)= 〈ϕ(x)ϕ(0)〉gG

− 〈ϕ2(0)〉gG. We first obtain

〈ϕ(x)ϕ(0)〉gG =

∫
∞

0

d(vq)

4ω(q)
cos qx cosh 2β(q). (134)

Hence,

CgG(x)= −

∫
∞

0

d(vq)

2ω(q)
coshβ(q) (1 − cos qx) (135)

= C(x, 0)+
m2

4

∫ +∞

0

d(vq)

ω0(q)[ω(q)]2
(1 − cos qx), (136)

where C(x, 0) is defined in equation (68). The latter result agrees with equation (67) in the
t → +∞ limit.

New Journal of Physics 12 (2010) 055019 (http://www.njp.org/)

http://www.njp.org/


23

7. Relevance to experiments

As mentioned in the introduction, ultracold atomic systems are the ideal arena to study the
quench dynamics of isolated quantum many-body systems. This is because they can be treated,
to a large extent, as entirely isolated systems. Furthermore, since this work is concerned with
the quench dynamics of a specific 1D model, the quantum sGM, it is also worth emphasizing
that the properties of these systems are highly tunable and, in particular, so is their effective
dimensionality. Thus, there are already a number of experimental realizations of 1D systems
(see e.g. [42]–[44] and references therein), and in particular, there are also experiments where
non-equilibrium dynamics has been probed in one dimension, e.g. [6, 45]. Thus, there is some
chance that some of the results obtained above may be relevant to current or future quench
experiments with ultracold atoms. However, since the sGM considered in the previous sections
is nothing but an effective (low-energy) description of certain 1D systems, any comparison
must be done with great care, as there is no fundamental reason why the low-energy effective
theory should capture the essentials of the (highly non-equilibrium) quench dynamics. This is
to be contrasted with the equilibrium dynamics, where renormalization group arguments show
that the sGM is indeed sufficient to describe the (universal) properties of certain 1D physical
systems. There is, in fact, a lot of evidence, both analytical and numerical, accumulated over
the years, for the latter fact. However, we are not in a comparable situation in the case of non-
equilibrium dynamics and thus future studies should try to address this question more carefully.

With the above caveat, let us proceed to mention a few situations where the sGM is
applicable, at least as a good description of the equilibrium state of a system that can be
realized with ultracold atomic systems. There are basically two kinds of systems, depending
on the interpretation of the order parameter operator, e−2iφ(x). The first instance is a 1D Bose
gas moving in a periodic potential, where the sGM is the effective field-theory description of
the Mott insulator-to-superfluid (MI to SF) transition in 1D [31, 46]. In this case, the order
parameter field is the periodic component of the boson density. A quantum quench from the
gapped (gapless) to the gapless (gapped) in this system can be realized by suddenly turning
on (off) the periodic potential applied to the 1D gas. The evolution of the 1D density could be
monitored by performing in situ measurements, and the two-point correlations by measuring, at
different times, the (instantaneous) structure factor using Bragg spectroscopy.

In the second instance, the order parameter field is interpreted as the (relative) phase of
two [47] (or more [48, 49]) 1D Bose gases coupled by Josephson coupling of two 1D Bose
gases. Thus, in this setup, a quench experiment [16] from the gapped (gapless) to the gapless
(gapped) phase would correspond to suddenly switching on (off) the (Josephson) tunneling,
which can be achieved by controlling the (optical or magnetic trapping) potentials that confine
the atoms to 1D. This should be done with care, ensuring that the atoms remain in the 1D regime
both in the initial and final states, that is, ensuring that e.g. the potential trapping the atoms
transversally is always sufficiently tight. The evolution of the relative phase can be monitored
by analyzing the interference fringes at different times.

8. Conclusions

To sum up, we have investigated the time evolution of two-point correlation functions and the
order parameter after a quantum quench of the relevant operator term in the sGM. We considered
two different kinds of quenches: a quench from a gapped phase to a gapless phase and vice versa.
In addition to the initial pure state, we considered an initial mixed state coupled to an energy
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reservoir at finite temperature, which is suddenly disconnected at the same time that the quench
is performed. In order to compute correlation functions, we studied two limits in which the
Hamiltonian renders quadratic in terms of either fermion or boson operators, and the dynamics
can be solved exactly: the LE and the semiclassical limits. In the quench from the gapped to the
gapless phase, the order parameter decays exponentially for long times to the ground state value,
with a timescale fixed by the gap. In turn, the correlation function exhibits a light-cone effect:
it decays exponentially with time with a timescale fixed by the gap until it relaxes to a value
that decreases exponentially with distance with correlation length fixed also by the mass. These
results are valid for both the LE and the semiclassical limits, and agree with the results obtained
in [9, 15] . For an initial state at high temperatures, these decays are also exponential (and the
light-cone effect is preserved), but the characteristic time and length is set by the temperature.
In between, a crossover connects these two limiting cases.

A general statement for the long-time dynamics when the term that opens the gap is
suddenly turned on is elusive, since in the semiclassical approximation the long-time limit of the
correlation function exhibits power-law decay with distance, and the order parameter vanishes,
these features being characteristic of a critical state. On the other hand, the results in the LE
limit indicate a relaxation to a non-universal constant value for long times, signaling an ordered
state. The latter behavior at the LE limit is also present at finite temperature. Whether these
differences are due to an artifact introduced by the semiclassical approximation or to a very
special behavior that occurs at the solvable point needs to be further clarified.

We have shown that the long-time behavior of correlation functions and the order parameter
in the different types of quenches can be obtained from the generalized Gibbs ensemble [14]
in which the conservation of a certain set of independent integrals of motion is fixed as a
constraint for maximization of the statistical entropy. Finally, the relevance of the quantum
quench dynamics in the sGM to cold atomic gases was discussed. The superfluid–Mott insulator
transition appears to be the most appropriate scenario to observe the described effects.
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Appendix. Some identities involving the Bessel functions

In this appendix, we prove the identities

∑
n∈Z

einφK0

(
α
√
µ2 + n2

)
= π

∑
l∈Z

exp
[
−µ

√
α2 + (2πl +φ)2

]
√
α2 + (2πl +φ)2

, (A.1)

∑
n∈Z

einφ α√
µ2 + n2

K1

(
α
√
µ2 + n2

)
=
π

µ

∑
l∈Z

exp
[
−µ

√
α2 + (2πl +φ)2

]
, (A.2)

New Journal of Physics 12 (2010) 055019 (http://www.njp.org/)

http://www.njp.org/


25

where φ ∈ [0, 2π). Using the standard integral representation

K0(αz)=
1

2

∫
∞

−∞

dx
cos xα

x2 + z2
, (A.3)

we have∑
n∈Z

eimφK0

(
α
√
µ2 + n2

)
=

1

2

∑
n∈Z

einφ

∫
dkx

eikxα√
k2

x +µ2 + n2
(A.4)

=
1

2π

∑
n∈Z

∫
dkx

∫
dky

eikxα+inφ

k2
x + k2

y + n2 +µ2
(A.5)

=
1

2π

∑
n∈Z

∫
dkx

∫
dky

∫
dkzδ(kz − n)

eikxα+ikzφ

k2
x + k2

y + k2
z +µ2

. (A.6)

Next we employ the Poisson summation technique in the form
∑

n∈Z δ(kz − n)=
∑

l∈Z e2π ilkz ,
and thus ∑

n∈Z

eimφK0

(
α
√
µ2 + n2

)
=

1

2π

∑
l∈Z

∫
dkx

∫
dky

∫
dkz

eikxα+ikzφ+2π ilkz

k2
x + k2

y + k2
z +µ2

(A.7)

=
1

2π

∑
l∈Z

∫
d3k

eik·rl

k2 +µ2
, (A.8)

where we introduced the notation

rx = α, (A.9)

ry = 0, (A.10)

rz = φ + 2πl. (A.11)

Using the standard expression for the three-dimensional bosonic propagator, we finally obtain∑
n∈Z

eimφK0

(
α
√
µ2 + n2

)
= π

∑
l∈Z

e−µrl

rl
, (A.12)

where rl = |rl |. From this equation the first identity equation (A.1) immediately follows.
To prove the second identity equation (A.2), we do integration on both sides of

equation (A.1):∫
dαα

∑
n∈Z

einφK0

(
α
√
µ2 + n2

)
= −

∑
n∈Z

einφ α√
µ2 + n2

K1

(
α
√
µ2 + n2

)
(A.13)

=

∫
dααπ

∑
l∈Z

exp
[
−µ

√
α2 + (2πl +φ)2

]
√
α2 + (2πl +φ)2

(A.14)

= −
π

µ

∑
l∈Z

exp
[
−µ

√
α2 + (2πl +φ)2

]
+ C ′(φ). (A.15)
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Thus, from equations (A.13) and (A.15),∑
n∈Z

einφ α√
µ2 + n2

K1

(
α
√
µ2 + n2

)
=
π

µ

∑
l∈Z

exp
[
−µ

√
α2 + (2πl +φ)2

]
+ C(φ). (A.16)

C(φ) is determined from the behavior of K1(z) for z → 0:

K1(z)∼
1

z
. (A.17)

Thus, in the limit α → 0, on the one hand,

lim
α→0

∑
n∈Z

einφ α√
µ2 + n2

K1

(
α
√
µ2 + n2

)
=

∑
n∈Z

einφ

µ2 + n2
=
π

µ

coshµ(π −φ)

sinhµπ
. (A.18)

and, on the other,

lim
α→0

π

µ

∑
l∈Z

exp
[
−µ

√
α2 + (2πl +φ)2

]
=
π

µ

∑
l∈Z

exp [−µ |2πl +φ|] =
π

µ

coshµ(π −φ)

sinhµπ
.

(A.19)

Therefore, both limits coincide and C(φ)= 0, and equation (A.16) reduces to the second
identity.
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