24 research outputs found

    A Geometric Formulation of Quantum Stress Fields

    Full text link
    We present a derivation of the stress field for an interacting quantum system within the framework of local density functional theory. The formulation is geometric in nature and exploits the relationship between the strain tensor field and Riemannian metric tensor field. Within this formulation, we demonstrate that the stress field is unique up to a single ambiguous parameter. The ambiguity is due to the non-unique dependence of the kinetic energy on the metric tensor. To illustrate this formalism, we compute the pressure field for two phases of solid molecular hydrogen. Furthermore, we demonstrate that qualitative results obtained by interpreting the hydrogen pressure field are not influenced by the presence of the kinetic ambiguity.Comment: 22 pages, 2 figures. Submitted to Physical Review B. This paper supersedes cond-mat/000627

    Genetic Mapping and Exome Sequencing Identify Variants Associated with Five Novel Diseases

    Get PDF
    The Clinic for Special Children (CSC) has integrated biochemical and molecular methods into a rural pediatric practice serving Old Order Amish and Mennonite (Plain) children. Among the Plain people, we have used single nucleotide polymorphism (SNP) microarrays to genetically map recessive disorders to large autozygous haplotype blocks (mean = 4.4 Mb) that contain many genes (mean = 79). For some, uninformative mapping or large gene lists preclude disease-gene identification by Sanger sequencing. Seven such conditions were selected for exome sequencing at the Broad Institute; all had been previously mapped at the CSC using low density SNP microarrays coupled with autozygosity and linkage analyses. Using between 1 and 5 patient samples per disorder, we identified sequence variants in the known disease-causing genes SLC6A3 and FLVCR1, and present evidence to strongly support the pathogenicity of variants identified in TUBGCP6, BRAT1, SNIP1, CRADD, and HARS. Our results reveal the power of coupling new genotyping technologies to population-specific genetic knowledge and robust clinical data

    Actively forming Kuroko-type volcanic-hosted massive sulfide (VHMS) mineralization at Iheya North, Okinawa Trough, Japan

    Get PDF
    Modern seafloor hydrothermal systems provide important insights into the formation and discovery of ancient volcanic-hosted massive sulfide (VHMS) deposits. In 2010, Integrated Ocean Drilling Program (IODP) Expedition 331 drilled five sites in the Iheya North hydrothermal field in the middle Okinawa Trough back-arc basin, Japan. Hydrothermal alteration and sulfide mineralization is hosted in a geologically complex, mixed sequence of coarse pumiceous volcaniclastic and fine hemipelagic sediments, overlying a dacitic to rhyolitic volcanic substrate. At site C0016, located adjacent to the foot of the actively venting North Big Chimney massive sulfide mound, massive sphalerite-(pyrite-chalcopyrite ± galena)-rich sulfides were intersected (to 30.2% Zn, 12.3% Pb, 2.68% Cu, 33.1 ppm Ag and 0.07 ppm Au) that strongly resemble the black ore of the Miocene-age Kuroko deposits of Japan. Sulfide mineralization shows clear evidence of formation through a combination of surface detrital and subsurface chemical processes, with at least some sphalerite precipitating into void space in the rock. Volcanic rocks beneath massive sulfides exhibit quartz-muscovite/illite and quartz-Mg-chlorite alteration reminiscent of VHMS proximal footwall alteration associated with Kuroko-type deposits, characterized by increasing MgO, Fe/Zn and Cu/Zn with depth. Recovered felsic footwall rocks are of FII to FIII affinity with well-developed negative Eu anomalies, consistent with VHMS-hosting felsic rocks in Phanerozoic ensialic arc/back-arc settings worldwide. Site C0013, ∼100 m east of North Big Chimney, represents a likely location of recent high temperature discharge, preserved as surficial coarse-grained sulfidic sediments (43.2% Zn, 4.4% Pb, 5.4% Cu, 42 ppm Ag and 0.02 ppm Au) containing high concentrations of As, Cd, Mo, Sb, and W. Near surface hydrothermal alteration is dominated by kaolinite and muscovite with locally abundant native sulfur, indicative of acidic hydrothermal fluids. Alteration grades to Mg-chlorite dominated assemblages at depths of >5 mbsf (metres below sea floor). Late coarse-grained anhydrite veining overprints earlier alteration and is interpreted to have precipitated from down welling seawater as hydrothermal activity waned. At site C0014, ∼350 m farther east, hydrothermal assemblages are characterized by illite/montmorillonite, with Mg-chlorite present at depths below ∼30 mbsf. Recovered lithologies from distal, recharge site C0017 are unaltered, with low MgO, FeO and base metal concentrations. Mineralization and alteration assemblages are consistent with the Iheya North system representing a modern analogue for Kuroko-type VHMS mineralization. Fluid flow is focussed laterally along pumiceous volcaniclastic strata (compartmentalized between impermeable hemipelagic sediments), and vertically along faults. The abundance of Fe-poor sphalerite and Mg-rich chlorite (clinochlore/penninite) is consistent with the lower Fe budget, temperature and higher oxidation state of felsic volcanic-hosted hydrothermal systems worldwide compared to Mid Ocean Ridge black smoker systems

    Pivotal Role of Adenosine Neurotransmission in Restless Legs Syndrome

    Get PDF
    The symptomatology of Restless Legs Syndrome (RLS) includes periodic leg movements during sleep (PLMS), dysesthesias, and hyperarousal. Alterations in the dopaminergic system, a presynaptic hyperdopaminergic state, seem to be involved in PLMS, while alterations in glutamatergic neurotransmission, a presynaptic hyperglutamatergic state, seem to be involved in hyperarousal and also PLMS. Brain iron deficiency (BID) is well-recognized as a main initial pathophysiological mechanism of RLS. BID in rodents have provided a pathogenetic model of RLS that recapitulates the biochemical alterations of the dopaminergic system of RLS, although without PLMS-like motor abnormalities. On the other hand, BID in rodents reproduces the circadian sleep architecture of RLS, indicating the model could provide clues for the hyperglutamatergic state in RLS. We recently showed that BID in rodents is associated with changes in adenosinergic transmission, with downregulation of adenosine A1 receptors (A1R) as the most sensitive biochemical finding. It was hypothesized that A1R downregulation leads to hypersensitive striatal glutamatergic terminals and facilitation of striatal dopamine release. Hypersensitivity of striatal glutamatergic terminals was demonstrated by an optogenetic-microdialysis approach in the rodent with BID, indicating that it could represent a main pathogenetic factor that leads to PLMS in RLS. In fact, the dopaminergic agonists pramipexole and ropinirole and the α2δ ligand gabapentin, used in the initial symptomatic treatment of RLS, completely counteracted optogenetically-induced glutamate release from both normal and BID-induced hypersensitive corticostriatal glutamatergic terminals. It is a main tenet of this essay that, in RLS, a single alteration in the adenosinergic system, downregulation of A1R, disrupts the adenosine-dopamine-glutamate balance uniquely controlled by adenosine and dopamine receptor heteromers in the striatum and also the A1R-mediated inhibitory control of glutamatergic neurotransmission in the cortex and other non-striatal brain areas, which altogether determine both PLMS and hyperarousal. Since A1R agonists would be associated with severe cardiovascular effects, it was hypothesized that inhibitors of nucleoside equilibrative transporters, such as dipyridamole, by increasing the tonic A1R activation mediated by endogenous adenosine, could represent a new alternative therapeutic strategy for RLS. In fact, preliminary clinical data indicate that dipyridamole can significantly improve the symptomatology of RLS

    HIV interactions with monocytes and dendritic cells: viral latency and reservoirs

    Get PDF
    HIV is a devastating human pathogen that causes serious immunological diseases in humans around the world. The virus is able to remain latent in an infected host for many years, allowing for the long-term survival of the virus and inevitably prolonging the infection process. The location and mechanisms of HIV latency are under investigation and remain important topics in the study of viral pathogenesis. Given that HIV is a blood-borne pathogen, a number of cell types have been proposed to be the sites of latency, including resting memory CD4+ T cells, peripheral blood monocytes, dendritic cells and macrophages in the lymph nodes, and haematopoietic stem cells in the bone marrow. This review updates the latest advances in the study of HIV interactions with monocytes and dendritic cells, and highlights the potential role of these cells as viral reservoirs and the effects of the HIV-host-cell interactions on viral pathogenesis

    14-3-3 proteins regulate exonuclease 1-dependent processing of stalled replication forks

    Get PDF
    Replication fork integrity, which is essential for the maintenance of genome stability, is monitored by checkpoint-mediated phosphorylation events. 14-3-3 proteins are able to bind phosphorylated proteins and were shown to play an undefined role under DNA replication stress. Exonuclease 1 (Exo1) processes stalled replication forks in checkpoint-defective yeast cells. We now identify 14-3-3 proteins as in vivo interaction partners of Exo1, both in yeast and mammalian cells. Yeast 14-3-3-deficient cells fail to induce Mec1-dependent Exo1 hyperphosphorylation and accumulate Exo1-dependent ssDNA gaps at stalled forks, as revealed by electron microscopy. This leads to persistent checkpoint activation and exacerbated recovery defects. Moreover, using DNA bi-dimensional electrophoresis, we show that 14-3-3 proteins promote fork progression under limiting nucleotide concentrations. We propose that 14-3-3 proteins assist in controlling the phosphorylation status of Exo1 and additional unknown targets, promoting fork progression, stability, and restart in response to DNA replication stress

    Microcephaly and chorioretinopathy due to a homozygous <i>TUBGCP6</i> mutation.

    No full text
    <p>(<b>A</b>) An affected infant has marked microcephaly (>4SD below normal), a receding forehead, diminutive anterior fontanelle, and sutural ridging. She has cognitive delay and visual impairment but is socially engaged. (<b>B</b>) Head circumference and length plots for Mennonite microcephaly patients. (<b>C</b>) Brain magnetic resonance imaging (MRI) shows diffuse pachygyria, normal myelination, and (<b>D</b>) a hypoplastic cerebellar vermis.</p

    Genetic mapping of seven Plain disorders.

    No full text
    <p>The results of autozygosity mapping using Affymetrix GeneChip 10 K or 50 K SNP microarrays are plotted for each disorder. The x-axis depicts chromosomal location on autosomes. Yellow peaks represent the number of contiguous homozygous SNPs shared by affected individuals and the purple peaks depict location scores. (<b>A</b>) Autozygosity mapping of two affected individuals identified a single, large block of homozygosity on chromosome 6 (yellow peak). Genotyping of 6 unaffected siblings excluded this homozygous block, but identified 12 genomic regions greater than 5 Mb in size (red peaks) that were consistent with linkage in the family. (<b>B</b>) List of genomic regions consistent with linkage in the single nuclear family with infantile parkinsonism-dystonia syndrome. Panels <b>C–H</b> provide mapping plots for the other 6 disorders. For two disorders (<b>C,D</b>), 50 K microarrays were used after 10 K microarrays failed to unequivocally localize the disease gene. The other four disorders (<b>E–H</b>) were mapped with 10 K microarrays.</p

    Corticobasal degeneration in the brain of an infant who died from a homozygous <i>BRAT1</i> mutation.

    No full text
    <p>(<b>A</b>) Throughout frontal, occipital and temporal cortex, there is marked neuronal loss, gliosis with astrocytes (arrowheads) and swollen oligodendroglia. The arrow indicates a perivascular microcalcification (superior frontal gyrus, deep cortex, 10×). (<b>B</b>) The anterior hippocampus is smaller than expected and there is neuronal loss and gliosis in zone CA-1 (Sommer's sector), demarcated from the CA-2 sector by the dotted line (4×). (<b>C</b>) At 60× magnification, the putamen shows a paucity of neurons, abundant Alzheimer Type 2 astrocytes (arrowhead) and scattered microglial nodules (arrow). Heterologous overexpression of N-terminal FLAG-tagged human BRAT1 (<b>D</b>) and hBRAT1 c.638_639insA (<b>E</b>) in mouse IMCD3 cells. Wild-type Brat1 localizes to the nucleus and cytoplasm of mIMCD3 cells. Mutant Brat1 (c.638_639insA) does not localize to the nucleus and instead forms punctate aggregations in the cytoplasm. Similar results were obtained in hARPE-19 cells (data not shown). (<b>F</b>) RT-PCR demonstrating the stability of overexpressed human BRAT1 transcripts (∼2.6 kb) in hARPE-19 cells. A B-actin amplicon (∼450 bp) was used as a loading control on the same gel. (<b>G</b>) Western blot of lysates from human ARPE-19 cells transiently transfected with wt hBRAT1 displaying FLAG-hBRAT1 fusion protein at ∼90 kDa or with hBRAT1 c.638_639insA displaying the truncated FLAG-hBRAT1 mutant fusion protein at ∼44.5 kDa (FLAG-tag and linker = 3.1 kDa). B-actin was labeled as a loading control.</p
    corecore