208 research outputs found
Early myocardial damage and microvascular dysfunction in asymptomatic patients with systemic sclerosis: A cardiovascular magnetic resonance study with cold pressor test
Purpose: Cardiac involvement in Systemic Sclerosis (SSc) is increasingly recognized as a mayor cause of morbidity and mortality. The aim of present study is to investigate the early stages of cardiac involvement in SSc by Cardiovascular magnetic resonance (CMR), combining the non-invasive detection of myocardial inflammation and fibrosis using T2 and T1 mapping techniques and the assessment of microcirculatory impairment through perfusion response to cold pressor test (CPT). Methods: 40 SSc patients (30 females, mean age: 42.1 years) without cardiac symptoms and 10 controls underwent CMR at 1.5 T unit. CMR protocol included: native and contrast-enhanced T1 mapping, T2 mapping, T2-weighted, cineMR and late gadolinium enhancement (LGE) imaging. Microvascular function was evaluated by comparing myocardial blood flow (MBF) on perfusion imaging acquired at rest and after CPT. Native myocardial T1 and T2 relaxation times, extracellular volume fraction (ECV), T2 signal intensity ratio, biventricular volumes and LGE were assessed in each patient. Results: SSc patients had significantly higher mean myocardial T1 (1029±32ms vs. 985±18ms, p<0.01), ECV (30.1±4.3% vs. 26.7±2.4%, p<0.05) and T2 (50.1±2.8ms vs. 47±1.5ms, p<0.01) values compared with controls. No significant differences were found between absolute MBF values at rest and after CPT; whereas lower MBF variation after CPT was observed in SSc patients (+33 ± 14% vs. +44 ± 12%, p<0.01). MBF variation had inverse correlation with native T1 values (r: -0.32, p<0.05), but not with ECV. Conclusions: Myocardial involvement in SSc at preclinical stage increases native T1, T2 and ECV values, reflecting inflammation and fibrosis, and reduces vasodilatory response to CPT, as expression of microvascular dysfunction
Functional imaging reveals rapid reorganization of cortical activity after parietal inactivation in monkeys
Impairments of spatial awareness and decision making occur frequently as a consequence of parietal lesions. Here we used event-related functional MRI (fMRI) in monkeys to investigate rapid reorganization of spatial networks during reversible pharmacological inactivation of the lateral intraparietal area (LIP), which plays a role in the selection of eye movement targets. We measured fMRI activity in control and inactivation sessions while monkeys performed memory saccades to either instructed or autonomously chosen spatial locations. Inactivation caused a reduction of contralesional choices. Inactivation effects on fMRI activity were anatomically and functionally specific and mainly consisted of: (i) activity reduction in the upper bank of the superior temporal sulcus (temporal parietal occipital area) for single contralesional targets, especially in the inactivated hemisphere; and (ii) activity increase accompanying contralesional choices between bilateral targets in several frontal and parieto-temporal areas in both hemispheres. There was no overactivation for ipsilesional targets or choices in the intact hemisphere. Task-specific effects of LIP inactivation on blood oxygen level-dependent activity in the temporal parietal occipital area underline the importance of the superior temporal sulcus for spatial processing. Furthermore, our results agree only partially with the influential interhemispheric competition model of spatial neglect and suggest an additional component of interhemispheric cooperation in the compensation of neglect deficits
Nitric oxide synthetic pathway in patients with microvascular angina and its relations with oxidative stress
A decreased nitric oxide (NO) bioavailability and an increased oxidative stress play a pivotal role in different cardiovascular pathologies. As red blood cells (RBCs) participate in NO formation in the bloodstream, the aim of this study was to outline the metabolic profile of L-arginine (Arg)/NO pathway and of oxidative stress status in RBCs and in plasma of patients with microvascular angina (MVA), investigating similarities and differences with respect to coronary artery disease (CAD) patients or healthy controls (Ctrl). Analytes involved in Arg/NO pathway and the ratio of oxidized and reduced forms of glutathione were measured by LC-MS/MS. The arginase and the NO synthase (NOS) expression were evaluated by immunofluorescence staining. RBCs from MVA patients show increased levels of NO synthesis inhibitors, parallel to that found in plasma, and a reduction of NO synthase expression. When summary scores were computed, both patient groups were associated with a positive oxidative score and a negative NO score, with the CAD group located in a more extreme position with respect to Ctrl. This finding points out to an impairment of the capacity of RBCs to produce NO in a pathological condition characterized mostly by alterations at the microvascular bed with no significant coronary stenosis
Clinical characteristics and outcomes of vaccinated patients hospitalised with SARS-CoV-2 breakthrough infection: Multi-IPV, a multicentre study in Northern Italy
Background: Despite the well-known efficacy of anti-COVID-19 vaccines in preventing morbidity and mortality, several vaccinated individuals are diagnosed with SARS-CoV-2 breakthrough infection, which might require hospitalisation. This multicentre, observational, and retrospective study aimed to investigate the clinical characteristics and outcomes of vaccinated vs. non -vaccinated patients, both hospitalised with SARS-CoV-2 infection in 3 major hospitals in Northern Italy. Methods: Data collection was retrospective, and paper and electronic medical records of adult patients with a diagnosed SARS-CoV-2 infection were pseudo-anonymised and analysed. Vaccinated and non -vaccinated individuals were manually paired, using a predetermined matching criterion (similar age, gender, and date of hospitalisation). Demographic, clinical, treatment, and outcome data were compared between groups differing by vaccination status using Pearson's Chi-square and Mann -Whitney tests. Moreover, multiple logistic regression analyses were performed to assess the impact of vaccination status on ICU admission or intra-hospital mortality. Results: Data from 360 patients were collected. Vaccinated patients presented with a higher prevalence of relevant comorbidities, like kidney replacement therapy or haematological malignancy, despite a milder clinical presentation at the first evaluation. Non -vaccinated patients required intensive care more often than their vaccinated counterparts (8.8% vs. 1.7%, p = 0.002). Contrariwise, no difference in intra-hospital mortality was observed between the two groups (19% vs. 20%, p = 0.853). These results were confirmed by multivariable logistic regressions, which showed that vaccination was significantly associated with decreased risk of ICU admission (aOR=0.172, 95%CI: 0.039-0.542, p = 0.007), but not of intra-hospital mortality (aOR=0.996, 95%CI: 0.582-1.703, p = 0.987). Conclusions: This study provides real -world data on vaccinated patients hospitalised with COVID-19 in Northern Italy. Our results suggest that COVID-19 vaccination has a protective role in individuals with higher risk profiles, especially regarding the need for ICU admission. These findings contribute to our understanding of SARS-CoV-2 infection outcomes among vaccinated individuals and emphasise the importance of vaccination in preventing severe disease, particularly in those countries with lower first -booster uptake rates
Quantitative trait locus analysis identifies Gabra3 as a regulator of behavioral despair in mice
The Tail Suspension Test (TST), which measures behavioral despair, is widely used as an animal model of human depressive disorders and antidepressant efficacy. In order to identify novel genes involved in the regulation of TST performance, we crossed an inbred strain exhibiting low immobility in the TST (RIIIS/J) with two high-immobility strains (C57BL/6J and NZB/BlNJ) to create two distinct F2 hybrid populations. All F2 offspring (n = 655) were genotyped at high density with a panel of SNP markers. Whole-genome interval mapping of the F2 populations identified statistically significant quantitative trait loci (QTLs) on mouse chromosomes (MMU) 4, 6, and X. Microarray analysis of hippocampal gene expression in the three parental strains was used to identify potential candidate genes within the MMUX QTLs identified in the NZB/BlNJ Ă RIIIS/J cross. Expression of Gabra3, which encodes the GABAA receptor α3 subunit, was robust in the hippocampus of B6 and RIIIS mice but absent from NZB hippocampal tissue. To verify the role of Gabra3 in regulating TST behavior in vivo, mice were treated with SB-205384, a positive modulator of the α3 subunit. SB-205384 significantly reduced TST immobility in B6 mice without affecting general activity, but it had no effect on behavior in NZB mice. This work suggests that GABRA3 regulates a behavioral endophenotype of depression and establishes this gene as a viable new target for the study and treatment of human depression
- âŠ