5,726 research outputs found

    Realization of Uq(so(N))U_q(so(N)) within the differntial algebra on RqN{\bf R}_q^N

    Full text link
    We realize the Hopf algebra Uq−1(so(N))U_{q^{-1}}(so(N)) as an algebra of differential operators on the quantum Euclidean space RqN{\bf R}_q^N. The generators are suitable q-deformed analogs of the angular momentum components on ordinary RN{\bf R}^N. The algebra Fun(RqN)Fun({\bf R}_q^N) of functions on RqN{\bf R}_q^N splits into a direct sum of irreducible vector representations of Uq−1(so(N))U_{q^{-1}}(so(N)); the latter are explicitly constructed as highest weight representations.Comment: 26 pages, 1 figur

    On the Decoupling of the Homogeneous and Inhomogeneous Parts in Inhomogeneous Quantum Groups

    Full text link
    We show that, if there exists a realization of a Hopf algebra HH in a HH-module algebra AA, then one can split their cross-product into the tensor product algebra of AA itself with a subalgebra isomorphic to HH and commuting with AA. This result applies in particular to the algebra underlying inhomogeneous quantum groups like the Euclidean ones, which are obtained as cross-products of the quantum Euclidean spaces RqNR_q^N with the quantum groups of rotation Uqso(N)U_qso(N) of RqNR_q^N, for which it has no classical analog.Comment: Latex file, 27 pages. Final version to appear in J. Phys.

    Unbraiding the braided tensor product

    Full text link
    We show that the braided tensor product algebra A1⊗‾A2A_1\underline{\otimes}A_2 of two module algebras A1,A2A_1, A_2 of a quasitriangular Hopf algebra HH is equal to the ordinary tensor product algebra of A1A_1 with a subalgebra of A1⊗‾A2A_1\underline{\otimes}A_2 isomorphic to A2A_2, provided there exists a realization of HH within A1A_1. In other words, under this assumption we construct a transformation of generators which `decouples' A1,A2A_1, A_2 (i.e. makes them commuting). We apply the theorem to the braided tensor product algebras of two or more quantum group covariant quantum spaces, deformed Heisenberg algebras and q-deformed fuzzy spheres.Comment: LaTex file, 29 page

    Improved Classification of Blockchain Transactions Using Feature Engineering and Ensemble Learning

    Get PDF
    Although the blockchain technology is gaining a widespread adoption across multiple sectors, its most popular application is in cryptocurrency. The decentralized and anonymous nature of transactions in a cryptocurrency blockchain has attracted a multitude of participants, and now significant amounts of money are being exchanged by the day. This raises the need of analyzing the blockchain to discover information related to the nature of participants in transactions. This study focuses on the identification for risky and non-risky blocks in a blockchain. In this paper, the proposed approach is to use ensemble learning with or without feature selection using correlation-based feature selection. Ensemble learning yielded good results in the experiments, but class-wise analysis reveals that ensemble learning with feature selection improves even further. After training Machine Learning classifiers on the dataset, we observe an improvement in accuracy of 2–3% and in F-score of 7–8%

    Using neural networks to obtain indirect information about the state variables in an alcoholic fermentation process

    Get PDF
    This work provides a manual design space exploration regarding the structure, type, and inputs of a multilayer neural network (NN) to obtain indirect information about the state variables in the alcoholic fermentation process. The main benefit of our application is to help experts reduce the time needed for making the relevant measurements and to increase the lifecycles of sensors in bioreactors. The novelty of this research is the flexibility of the developed application, the use of a great number of variables, and the comparative presentation of the results obtained with different NNs (feedback vs. feed-forward) and different learning algorithms (Back-Propagation vs. Levenberg–Marquardt). The simulation results show that the feedback neural network outperformed the feed-forward neural network. The NN configuration is relatively flexible (with hidden layers and a number of nodes on each of them), but the number of input and output nodes depends on the fermentation process parameters. After laborious simulations, we determined that using pH and CO2 as inputs reduces the prediction errors of the NN. Thus, besides the most commonly used process parameters like fermentation temperature, time, the initial concentration of the substrate, the substrate concentration, and the biomass concentration, by adding pH and CO2, we obtained the optimum number of input nodes for the network. The optimal configuration in our case was obtained after 1500 iterations using a NN with one hidden layer and 12 neurons on it, seven neurons on the input layer, and one neuron as the output. If properly trained and validated, this model can be used in future research to accurately predict steady-state and dynamic alcoholic fermentation process behaviour and thereby improve process control performance

    Composition of Arthropod Species Assemblages in Bt-expressing and Near Isogenic Eggplants in Experimental Fields

    Get PDF
    The environmental impact of genetically modified (GM) plants in experimental fields has been examined in several ways, in particular with respect to the dynamics of specific nontarget organisms. The approach of sampling for biodiversity in agroecosystems to compare complex patterns could also be useful in studying potential disruptions caused by GM crops. In this study, we set up replicated field plots of Bt-expressing eggplants and near isogenic untransformed eggplants as a control. We monitored the presence and abundance of herbivore and predator arthropods in weekly visual samplings of the plant canopy for three growing seasons (2001-2003). Insect species were pooled in organismal taxonomic units (OTUs); three multivariate methods were used to compare species assemblage as an estimate of insect biodiversity. This multistep statistical approach proved to be efficient in recognizing association patterns, as evidenced by the data for the target species Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) clearly showing a significant association with the control plots. All the analyses indicate a comparable species assemblage between transgenic and near isogenic eggplant areas. Our results suggest that some taxa may warrant more specific study. For example, Alticinae beetles (Coleoptera: Chrysomelidae) were alternatively more abundant in either of the two treatments, and their overall abundance was significantly higher on transgenic eggplants. In light of these results and because of their taxonomic proximity to the target species, these herbivores may represent an important nontarget group to be further studied. Moreover, some sap feeders (e.g., Homoptera: Cicadellidae) were more abundant on Bt-expressing plants in some samples in all 3 y

    An empirical evaluation of prediction by partial matching in assembly assistance systems

    Get PDF
    Industrial assistive systems result from a multidisciplinary effort that integrates IoT (and Industrial IoT), Cognetics, and Artificial Intelligence. This paper evaluates the Prediction by Partial Matching algorithm as a component of an assembly assistance system that supports factory workers, by providing choices for the next manufacturing step. The evaluation of the proposed method was performed on datasets collected within an experiment involving trainees and experienced workers. The goal is to find out which method best suits the datasets in order to be integrated afterwards into our context-aware assistance system. The obtained results show that the Prediction by Partial Matching method presents a significant improvement with respect to the existing Markov predictors

    Nonpointlike Particles in Harmonic Oscillators

    Get PDF
    Quantum mechanics ordinarily describes particles as being pointlike, in the sense that the uncertainty Δx\Delta x can, in principle, be made arbitrarily small. It has been shown that suitable correction terms to the canonical commutation relations induce a finite lower bound to spatial localisation. Here, we perturbatively calculate the corrections to the energy levels of an in this sense nonpointlike particle in isotropic harmonic oscillators. Apart from a special case the degeneracy of the energy levels is removed.Comment: LaTeX, 9 pages, 1 figure included via epsf optio

    Time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 mu m

    Get PDF
    We present the time-resolved optical characterization of InAs/InGaAs self-assembledquantum dots emitting at 1.3 μm at room temperature. The photoluminescence decay time varies from 1.2 (5 K) to 1.8 ns (293 K). Evidence of thermalization among dots is seen in both continuous-wave and time-resolved spectra around 150 K. A short rise time of 10±2 ps is measured, indicating a fast capture and relaxation of carriers inside the dots
    • …
    corecore