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Abstract: Industrial assistive systems result from a multidisciplinary effort that integrates IoT (and
Industrial IoT), Cognetics, and Artificial Intelligence. This paper evaluates the Prediction by Partial
Matching algorithm as a component of an assembly assistance system that supports factory workers,
by providing choices for the next manufacturing step. The evaluation of the proposed method was
performed on datasets collected within an experiment involving trainees and experienced workers.
The goal is to find out which method best suits the datasets in order to be integrated afterwards
into our context-aware assistance system. The obtained results show that the Prediction by Partial
Matching method presents a significant improvement with respect to the existing Markov predictors.

Keywords: assembly assistance system; industry 4.0; prediction by partial matching; smart factory;
training station

1. Introduction

The Smart Factory vision in Industry 4.0 is a complex system where artefacts collabo-
rate with people, facilitated by a complex exchange of data among all interactants, both
in the physical and in the digital world. In this data-driven collaboration environment,
human assistance systems play a major role by providing the most suitable information at
the right time, as specified in the Operator 4.0 concept [1,2].

In Europe, the jobs involving manual work constitute the second-largest category
within the manufacturing sector [3]. Assistive systems are nowadays important compo-
nents of the manufacturing industry, supporting humans to better deal with the increasing
complexity of products and operating procedures, as well. Assistance systems support and
guide workers to learn and improve their skills, safeguarding their security, while being
unobtrusive, but ensuring that the operators are always in control.

To support the workers’ cognitive effort during manual assembly processes, appropri-
ate, dynamic, context-dependent instructions should be provided to the worker in a timely
and ergonomic way. In addition, mistake detection modules that check whether a manu-
facturing process is executed and completed as specified reduce the need for rework [4].
Modern factories are relying more and more on such systems to help workers and eventu-
ally increase efficiency. For complex tasks that require skilled workers, computer-aided
assistive systems are often used to provide guidance in the manufacturing process. Some
production processes must be completed in a fixed sequence of subtasks, while in other
processes the same result may be accomplished through different orderings, and there may
not exist an optimal order, as different procedures may fit various specific characteristics
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of the worker. Sensors are widely used to detect body position and motion, to recognize
facial expressions, and to identify objects. Such information, recorded within an assembly
station, can be used to recognize the current state of the manufacturing process and to
recommend possible next assembly steps. In essence, it can be said that assistive systems
represent a multidisciplinary effort, involving IoT (and Industrial IoT), cognitive aspects,
and Artificial Intelligence.

In the previous works [5–8], several context-based predictors were investigated. These
predictors provide assembly instructions based on the current and some past assembly
states. Two-level context-based predictors, Markov models and Long Short-Term Memory
(LSTM), have been evaluated and the results have shown deficiencies in terms of coverage.
A more detailed description of these methods is given in Section 2. As the goal is to integrate
the most efficient predictor in the assembly assistance system to support the workers with
choices for the next assembly step, other methods will be further investigated.

This paper explores the predictor able to provide multiple choices for the next as-
sembly step. By combining multiple Markov models of different orders, the Prediction
by Partial Matching (PPM) can better identify manufacturing patterns. Thus, we expect
that the previously mentioned assembly modeling methods will be outperformed by the
PPM. For the case study, a customizable modular tablet was chosen as the target product
to analyze the efficiency of the PPM in predicting the next assembly step. Prediction rate,
coverage, and prediction accuracy were used as efficiency metrics. The method exploits the
last assembly step(s) as input information, as well as characteristics of the human worker,
such as the gender, use of eyeglasses, height, and the sleep quality in the previous night.
The evaluation of the proposed method was realized using datasets collected from an
experiment based on a case study, in which 68 inexperienced workers and 111 experienced
factory workers performed unrestricted assemblies of the target product. Thus, the pro-
posed predictors can learn correlations between assembly styles and characteristics of the
human workers. These correlations are exploited afterwards in order to suggest the next
assembly step under different conditions. The final decision support system can be very
useful to inexperienced workers in an effective way, by replacing a costly training process.
Even experienced workers can benefit from using it, especially in long manufacturing
processes in which monotony and tiredness can otherwise lead to mistakes.

The rest of this paper is organized as follows: Section 2 presents related work, Section 3
describes the proposed prediction methods used to recommend the next assembly step,
Section 4 discusses the evaluation, whereas Section 5 concludes the paper and proposes
some further work directions.

2. Related Work

Since the pioneering work of Yamada et al. [9], a consistent flow of research on skill
assistance systems for workers has been conducted. A review of smart manufacturing
systems is provided in [10]. A human–machine centric assembly station is proposed by
Rojas et al. [11]. In that work, the focus is on a case study in a mini-factory laboratory,
equipped with devices for manual assembly as well as devices used for automated or
hybrid assembly. The manual workstations had flexible plug-in systems of tubular frames
and tables, equipped with electric screwdrivers and grab containers. Other elements
were the lean Kanban flow racks used to apply material commission. The laboratory
had software systems and several robots which could be used for automated assembly
demonstrations. The students who participated in the case study simulated the manual
assembly of pneumatic cylinders.

Elkomy et al. [12] presented the ABBAS biosensor-centric assistive system and inves-
tigated the feasibility of using biodata. Funk et al. [13] discussed the requirements for
providing cognitive support at the workplace. Bertram et al. [14] analysed the intelligent
workstations available in both research and industry applications. Several implementations
were presented, including the Bosch Rexroth’s “ActiveAssist” station and “Plant@Hand”
from the Fraunhofer Institute for Computer Graphics Research. The following aspects were
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considered important in a workstation: assisted work instructions, automated generation
of work plans, detection and recognition of tools, detection, and recognition of worker
contexts and assembly processes, flexible and adaptable integration in production and
automated learning ability.

Mueller et al. [15] presented the development of an assembly assistance platform
especially dedicated to rework stations. It comprised a planning environment, where
processes and parameters are defined, and a control system. In contrast to the present
work, the input to the planning module is defined manually.

Gorecky et al. [16] presented a virtual training technique intended to improve produc-
tion transparency for the human worker and to ensure faster adaptation to new situations.
The trainees can acquire relevant knowledge about the involved components, as well
as assembly positions, modalities, and sequences. There are three stages in the learning
process: an easy mode for familiarization, a medium mode and, finally, a hard mode
where the appropriate components must be actively chosen. The knowledge is further
reinforced through specific games. The automated training content is generated by an
interoperable information interface. In [17], the impact of virtual training on the workers’
learning process was presented. The work concluded that a virtual simulation performed
before the real manufacturing increased the workers’ efficiency. In [18], gamification was
applied to get the worker fully immersed in the production activities.

SOPHOS-MS is a human–machine collaboration solution, relying on Augmented
Reality (AR), designed to provide visual instructions to humans, as well as containing an
intelligent personal digital assistant for voice interaction between the human and the expert
system. It offers operators real-time feedback (i.e., visual and voice) on tasks, procedures
to enable the safe operation of manufacturing systems, as well as a training approach. The
evaluation of the proposed solution, in contrast with the classical training of operators, was
conducted in order to set up a CNC machine for a given component, proving better results
for operators trained by SOPHOS-MS [19].

Lai et al. [20] developed an assembly training system providing on-site augmented
reality instructions (i.e., text, video, and 3D animations) to reduce time and errors made by
human operators. The generation of augmented reality instructions relies on deep learning
networks (i.e., Region-Based Convolutional Neural Network) trained on synthetic data to
provide the appropriate information when the user engages with a specific tool to perform
an assembly task. The study revealed that the system reduced the duration and also the
assembly errors by approximately 33%.

Loskyll et al. [21] proposed a context-based orchestration framework composed of
three layers: service registration, service discovery and selection, as well as service orches-
tration. Ontologies were modeled for semantic reasoning in the discovery and selection
of services and were used to describe the web services provided by field devices. The
service with the highest score, weighted among several matching criteria, was selected.
The process was then decomposed in atomic processes and the corresponding services
were invoked for the resulting composite process.

In [5], a two-level contextual predictor was used to suggest the next assembly steps.
The first level of such a predictor consisted in a left-shift register which contained the last
assembly states. The second level was a prediction table, storing pairs of state-patterns
and their associated next states. The left-shift state register selected an entry from the
prediction table. Then, the state from the selected entry was provided as the predicted one.
Another variant of the two-level contextual predictor extended each assembly state with
an automaton which could be in stable or in unstable substate. The predictor could learn a
different state for a certain pattern, only if its current state was unstable, otherwise it just
switched from stable to unstable and kept the current state. Unfortunately, this scheme
provided insignificant improvement, and because it used supplementary information
and additional steps in the prediction process, it was considered less efficient than the
scheme without automata. The Markov predictor presented in [6,7] is another two-level
predictor which can store multiple next states, together with their number of occurrences
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for each pattern. The state with the highest number of occurrences is extracted from the
prediction table entry selected with the left-shift state register and is then provided as the
predicted one. Such a predictor can provide multiple next assembly choices, but for time-
critical decisions it can be configured to return the most probable state. Article [8] presents
the use of LSTM in modeling assembly processes. The LSTM network uses the human
characteristics and the current assembly state to make a prediction of the next assembly
state. The implementation of the recurrent network was done through TensorFlow and
Keras and is composed of several layers: an input layer, two LSTM layers and an output
layer. Several tests have been performed to finetune the hyperparameters. Although the
proposed network has a lower accuracy than the Markov predictor, it can better adapt to
new scenarios, being able to correctly predict over twice as many assembly steps as the
Markov predictor.

3. Prediction-Based Assembly Support System

This section provides a detailed description of the assembly assistance system proto-
type. The focus is on its prediction module, which is essential for assistive capabilities. The
PPM algorithm is used to provide choices for the assembly step within assisted manufac-
turing processes.

3.1. Assembly Assistance System

The goal of the assembly assistance system (Figure 1) is to support operators to
correctly learn the manual assembly process for a customizable tablet, without any human
intervention (i.e., trainer).

Figure 1. Assembly assistance system.

From a hardware point of view, the assembly assistance system is composed of five
main components. The aluminum frame has embedded electrical motors that enable the
height adjustment of the assembly table. The frame’s aluminum profiles enable easy and
flexible mounting of other relevant devices on the frame. The Sensytouch ST43 SLIM device
is used to display information, to enable user interaction, and to run the training application
and the required services (presented below). Because it is embedded in the frame as a
tabletop and because it has a protective cover on the touchscreen, all the available surface
can be used as working space (assembly and storage area, with the required assembly
components laid on it). Its main characteristics are presented in Table 1.
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Table 1. Characteristics of Sensytouch ST43 SLIM.

Component Characteristics

Display 43-inch 4K touchscreen
CPU Intel i7-7700
GPU NVIDIA GeForce GTX 1060
RAM 16 GB
SSD 250 GB

Operating System Windows 10

The sensor for posture and facial expression detection is placed in front of the user. For
this, a Microsoft Kinect Azure is utilized. Tobii’s Pro 2 glasses are worn for eye tracking and
gaze analysis, while a Shimmer sensor is mounted on a finger for galvanic skin response
(GSR) readings. The sensor for object and hand movement is mounted on the upper part,
above the table and hands. For this, Stereolabs’ ZED 3D camera is used.

The application’s user interface is exemplified in Figure 2, highlighting the main areas
for instruction, interaction (i.e., buttons for start, repeat, previous, and next), storage, as
well as the location where to store the assembled components after each instruction.

Figure 2. User interface displayed on the large touchscreen.

From a software perspective, the assembly assistance system is provided with micro-
services to enhance user experience. All micro-services communicate via the gRPC frame-
work. Additionally, each micro-service has its own Health Check and Service Discovery
mechanisms. These mechanisms allow us to select which services will collaborate at any
given time.

Next, the micro-services which are relevant from the perspective of assembly pre-
diction and user behaviour are presented. The height adjustment of the assembly station
can be done manually, by pressing physical buttons on the station, or from software. The
experiment revealed that the height of the subjects is one of the major factors that influence
the assembly process. The depth camera streaming service allows the clients to control the
depth camera as if they were connected to it. It exposes all the camera capabilities (RGB,
depth, point cloud, etc.). The object detection service detects the position of the objects
in each image. The object position service combines object detection and depth camera
microservices to establish the 3D position of objects relative to the camera. Additionally, it
detects if the objects have been inserted correctly in their slots. In case of a wrong step, it
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will prompt the user to undo the action. This feature acts as a safeguard for the prediction
service, since it cannot detect the incorrect assemblies, nor should this be its responsibility.
In the future, this feature will be extracted in its own service. The emotion detection service
relies on face mimics. This service detects the emotion of the user based on a picture of his
face. Ongoing work is to be done to estimate emotion based on the data fusion from both
mimic and GSR. The human characteristics collector service collects human characteristics
such as age and gender. The mood can be identified with the aid of “emotion detection
based on face mimics” microservice. These characteristics aid in the prediction process due
to factors or preferences representative for a segment of the population. The prediction
service (running on the Sensytouch device described earlier) receives information collected
from the other services through an aggregator and, based on its various algorithms, it
should return the next recommended assembly step. Its role is to guide the trainees during
their training stage and optionally to be used as a detector of incorrect assembling for
experienced workers.

These services change the way the user interacts with the assembly station. They
reduce the probability for the user to make a mistake and introduce better recommendations
for each individual user. Due to their nature, all these services are plug and play, enabling
the supervisor to run only the services he deems necessary during the training. Thus, the
services allow for great interoperability.

The tablet is made up of maximum eight components (Figure 3): one screen, one
mainboard, and six modules which can be speakers (white), flashlights (purple) or batteries
(blue). The customization consists in the selection of quantities for module types. The
mainboard is the base component on which the other pieces are assembled. All the other
components have a bit associated in the code, which describes a certain state of the tablet. If
a component is correctly assembled, its corresponding bit is “1”. Otherwise, if a component
is wrongly assembled or not yet mounted, its corresponding bit is “0”. Thus, a seven-bit
integer represents the assembly completion of the tablet, 127 representing a fully assembled
tablet and 0 a disassembled tablet. The first bit of the representation is for the screen, the
next three are for the top row, and the last three for the bottom row.

Figure 3. Binary representation of the tablet’s state.

Due to this binary codification, the system can detect which component has been
mounted, by comparing the codification of two consecutive states. Moreover, by comparing
the current state with the predicted next state, it is possible to determine which component
should be next assembled.
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3.2. Providing Choices for the Next Assembly Step through Prediction by Partial Matching

For the next assembly step prediction, the PPM algorithm is applied, which is, in fact,
a hybrid method composed of Markov chains of different order. It was applied in data
compression, but it was used also in other applications relying on prediction, like web
prefetching [22], branch prediction in microprocessors [23], etc. In a Markov chain of order
R, the next state probability can be defined as P[qt|qt−1, . . . , q1 ] = P[qt|qt−1, . . . , qt−R ],
where qt is the state at time t. As presented in [6,7], the prediction with Markov models
can be performed using a table trained with past data, which stores pairs of patterns
of a certain length and the corresponding next states, together with their occurrence
frequencies. Figure 4 presents the structure of a Markov predictor of order R. The patterns
in this work are composed of human worker characteristics (C1, . . . , C4) and assembly
sequences (qt−R, . . . , qt−1). The next state can be predicted if the current context is found
in the pattern field of the table and then the state qt with the highest frequency from that
entry will be the prediction.

Figure 4. Rth order Markov predictor.

A PPM of order R tries to provide a prediction with the Markov predictor of order
R and, if it can do that, its prediction is returned by the PPM. Otherwise, the order of
the Markov predictor is iteratively decremented until a prediction can be provided. If
the Markov predictor of order 1 cannot issue a prediction, then the PPM itself is not
able to do that. The PPM’s prediction mechanism is depicted in Figure 5. For the PPM
implementation, the Markov predictor with padding (presented in [7]) is used. The Markov
predictor was enhanced to also use the workers’ characteristics. Upon instantiation of
the PPM algorithm, the order R should be provided. For each order, starting from R and
moving down to 1, a Markov predictor is created. After all the R Markov predictors are
created, they are sorted in descending order. When the prediction algorithm is called, it
will iterate sequentially through the Markov predictors to find one which has a match for
the assembly pattern, and so it can predict. If the Markov predictor of order R has no match,
then the next Markov predictor from the sorted list is checked. The first Markov model
that has knowledge of the assembly pattern is the one that will make the final prediction.
If no Markov model can find a matching sequence, then the PPM algorithm is going to
return –1, meaning that it cannot make a prediction. As far as we know, PPM has not
been used for next assembly step prediction before. The novelty of this method consists in
the combination of different order Markov predictors, which ensures that matches for the
occurring assembly patterns can be found easier.

There are over 5000 possible ways of assembling the tablet and 4 characteristics that
can define the behaviour of a worker, each one with 2 possible outcomes. Thus, the tablet
could have over 80,000 unique assembling possibilities. Because of the high diversity of
assembly patterns, the current context cannot always be found in the prediction table of the
prediction scheme presented above, which negatively affects the prediction rate. Therefore,
an enhanced scheme was considered, which explores neighboring characteristics of the
user, whenever the current context (with the actual user characteristics) does not have an
exact match. This approach would be practicable even if several additional characteristics
were considered.
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Figure 5. The prediction mechanism of the PPM.

Neighboring context exploration involves changing one characteristic of the worker
at a time. A single trait of the worker is changed sequentially at a time, after which making
a prediction is attempted. For example, if the user is a tall male wearing eyeglasses that
slept well the previous night, and there is no match for this combination, predictions will
be made by varying his characteristics (one at a time), obtaining four different neighboring
states. In one of them, the gender is the changed variable, so that a prediction for a tall
female wearing eyeglasses that slept well the previous night is made. Afterwards, the
variable for height will be changed, then the one related to whether the worker slept well,
and lastly the one related to wearing glasses. This approach might yield up to 4 predictions,
given that the model has knowledge about the neighbors. The step that was predicted
the most from the neighboring states will be considered the next assembly step (majority
voting). Ties are resolved by selecting the most frequent prediction, having the lower index
in the prediction list. If the model has no match for the assembly state paired with the
user’s characteristics, nor with neighboring characteristics, then no predictions can be
made.

4. Evaluation
4.1. Experimental Methodology

The experiment involved two basic groups, 68 second year BSc students and 111 fac-
tory workers, who assembled freely, without guidance, the customizable modular tablet
composed of eight components (as described in Section 3.1). The following setup was used
for the experiment: a top-mounted camera that recorded the assembly steps, a table that
had the working zone marked with red tape and two images of the tablet (front view and
back view) on the left of the area. The tablet’s components had their positions marked so
that everyone encountered the same setup. Additionally, two laptops were used. One was
connected to the camera and one was used for remote access.

Upon entering the room, the participant was provided with an ID. Since minimal
interaction with the subjects was desired, the experiment was controlled from another
room. The participants could only listen to a recorded short voice message, which was
carefully recorded to prevent any transmission of feelings or emotions. The instructions
in the message stated that the tablet should be assembled as indicated in the images and
that they were required to use all the components in the assembly process. After the voice
message finished playing, the participants started the assembly process. When the subjects
considered the product assembled, they made an announcement, so the recording was
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stopped and they were taken to another room where they filled in a questionnaire. The
ID given at the start of the experiment was used in the questionnaire to help link the
answers to the recording. There were general questions regarding height, age, gender,
dominant hand, highest level of education completed and if they were eyeglass wearers.
Other questions were for self-evaluation: “were you hungry during the experiment?”,
“do you have any prior experience in product assembly?”, “what was your stress level
before the experiment?”, “how would you describe the state you found yourself in during
the experiment (at the beginning, during and at the end of the experiment)”, “are you
under the influence of any drugs that might influence your level of concentration?”, and
”how would you describe the sleep quality of the previous night?” After answering these
questions, they were tasked to complete a perception test.

After all the assembly steps were encoded, each assembly was ranked with a score
that represented the degree of completeness of the tablet. Each correctly placed component
was worth 1 point of the final score, with a total maximum of 7. As an example, the score
of a subject who assembled all the components, except the screen, was 6/7. Additionally,
each assembly had its duration in seconds recorded.

Two datasets were obtained through the experiment, further denoted as “Trainees”
and “Workers”. The “Trainees” dataset is composed only of students’ assemblies, while
the “Workers” one contains assemblies made by factory workers.

4.2. Experimental Results

This subsection presents the results of the proposed predictor, which will also be
compared with other existing prediction methods. The aim is to compare both the capacity
of learning the entire dataset and the capacity to adapt to new assembly scenarios. Three
metrics have been chosen to evaluate the performance of the prediction algorithms: pre-
diction rate, accuracy and coverage. The prediction rate measures how many times the
algorithm was able to make a prediction. The prediction rate is computed in relation to the
size of the testing dataset. The accuracy measures how many of the predictions made were
correct and the coverage considers the correct predictions in relation to the whole testing
dataset.

In the tables presented below, for each metric there are two columns “100/100” and
“75/25”. These two columns refer to how the algorithms were evaluated: “100/100”
indicates that both the training and testing datasets were generated using 100% of the
dataset, while “75/25” means that 75% of the dataset was used on the training of the model
and the rest of 25% was considered for testing.

Table 2 presents the three metrics for the PPM algorithm of orders 1 to 7, on the
“Trainees” dataset. The prediction rate remains constant throughout the orders for both
testing methods. For the “100/100” testing method, the accuracy and coverage increase in
small amounts up to order 3, where maximum percentages are achieved. Due to higher
orders, the sequence can be more tailored to the worker, thus an increase of the accuracy
and coverage can be observed. For new data, it seems that the metrics remain constant
throughout all the orders.

Table 2. Evaluation of the PPM algorithm on the “Trainees” dataset.

PPM
Order

Prediction Rate (%) Accuracy (%) Coverage (%)

100/100 75/25 100/100 75/25 100/100 75/25

1 95.62 54.46 80.05 61.82 76.55 33.66
2 95.62 54.46 82.21 61.82 78.61 33.66
3 95.62 54.46 82.48 61.82 78.87 33.66
4 95.62 54.46 82.48 61.82 78.87 33.66
5 95.62 54.46 82.48 61.82 78.87 33.66
6 95.62 54.46 82.48 61.82 78.87 33.66
7 95.62 54.46 82.48 61.82 78.87 33.66
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As presented in Section 3.2, the PPM predictor was improved by enabling it to search
in all the neighboring states (when it is necessary) for a possible assembly. The PPM
with neighboring is further denoted PPMN. Table 3 presents the results of the PPMN
on the “Trainees” dataset. On known data (with the “100/100” testing method), a small
increase can be observed in terms of coverage, a 2% increase in the prediction rate, while
the accuracy was slightly lower than that of the PPM without neighboring states. When it
comes to new data (“75/25” testing method), the coverage increased by over 10% compared
to the PPM without neighboring search and the prediction rate by over 20%. Although
there is a slightly lower accuracy, the use of this enhanced algorithm is preferred.

Table 3. Evaluation of the PPMN on the “Trainees” dataset.

PPMN
Order

Prediction Rate (%) Accuracy (%) Coverage (%)

100/100 75/25 100/100 75/25 100/100 75/25

1 97.68 77.23 78.89 57.69 77.06 44.55
2 97.68 77.23 81 57.69 79.12 44.55
3 97.68 77.23 81.27 57.69 79.38 44.55
4 97.68 77.23 81.27 57.69 79.38 44.55
5 97.68 77.23 81.27 57.69 79.38 44.55
6 97.68 77.23 81.27 57.69 79.38 44.55
7 97.68 77.23 81.27 57.69 79.38 44.55

After evaluating the two implementations of the PPM algorithm, with and without
neighboring states, it can be observed that the optimal order for both algorithms is 3. The
optimal configurations of these two algorithms will now be compared with two prediction
methods presented and evaluated in previous works: the Markov model with padding [7],
enhanced to use human characteristics, and the LSTM [8]. For the Markov model with
padding, the optimal order is 2. The comparisons are presented on both the “Trainees”
and “Workers” datasets. Both the capacity to learn and to adapt to new challenges will be
measured.

Figure 6 compares the PPM and PPMN methods with the other existing methods in
terms of prediction rate. The LSTM network has a very high prediction rate in most of
the cases, whereas the PPMN has the top prediction on the “Trainees” dataset with the
“100/100” testing method. On new data (“75/25” testing), compared to PPM, the PPMN
predicts over 10% more often on the “Workers” dataset and over 20% more often on the
“Trainees” dataset, with a prediction rate of 91.18% and 77.23%, respectively.

Figure 6. Prediction rate.



Appl. Sci. 2021, 11, 3278 11 of 13

Both the PPM and PPMN have a similar prediction accuracy across all datasets, with
PPM being slightly higher (see Figure 7). On “100/100 testing”, the Markov predictor has
the highest prediction accuracy. Although LSTM has the highest prediction rate, it is the
one that has the lowest accuracy across all the evaluation scenarios.

Figure 7. Prediction accuracy.

The coverage measures the capacity of these prediction methods to model existing
data and to adapt to new data. As Figure 8 depicts, PPMN is the best prediction method to
model existing data and has a coverage of 44.55% on the “Trainees” dataset and 71.18% on
the Workers dataset, considering the “75/25” testing method. Taking into account that the
coverage is an important efficiency indicator, as it expresses the ratio of correct predictions,
these results are remarkable. The combination of different order Markov predictors, as well
as the exploration of the neighboring states, proved to be a good solution. The PPMN can
easier find matching assembly patterns to provide next step prediction.

Figure 8. Coverage.

5. Conclusions and Further Work

In this paper a prediction-based assembly support system was presented, which
can adaptively direct the workers in their manufacturing activities. The focus is on its
prediction module which, in this work, uses the PPM algorithm to provide choices for
the next assembly step, which can be helpful especially for inexperienced workers. The
evaluations were performed on the assembly data collected within an experiment in
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which the participants were 68 trainees and 111 factory workers who had to assemble
a customizable modular tablet. The optimal PPM is of order 3. For a higher prediction
rate, an enhanced PPM with a neighbor-states checking mechanism (PPMN) was used.
Thus, when the algorithm could not find the current state (consisting of the worker’s
characteristics and the sequence of the last assemblies), it also checked the states which
were neighbors from the human characteristics point of view and, in case of success, the
next assembly step was determined by majority voting among such existing neighbor
states. The PPMN has a significantly higher coverage on new data: 44.55% in the case of
trainees and 71.18% in the case of factory workers. It also outperforms the LSTM and the
Markov model in terms of coverage.

As concerns directions for further work, the evaluation of Hidden Markov Models
and Dynamic Bayesian Network as next assembly step predictors is considered. From a
higher perspective, the long-term target for the assembly assistance system is to provide an
interactive, tailored experience for trainees and effective training for manual operations.
Thus, the prediction system should cover multi-modal interaction for a broad adaptation
of instructions from a semantic, detail or type (e.g., visual, audio, text, etc.) perspective.
For this, data from many longitudinal studies and experiments on predictor training need
to be executed to cover different typologies (e.g., age, gender, handedness, etc.), the basic
emotional or mental state of the user during training, previous experience, etc.
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