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Abstract: This work provides a manual design space exploration regarding the structure, type,
and inputs of a multilayer neural network (NN) to obtain indirect information about the state
variables in the alcoholic fermentation process. The main benefit of our application is to help experts
reduce the time needed for making the relevant measurements and to increase the lifecycles of
sensors in bioreactors. The novelty of this research is the flexibility of the developed application,
the use of a great number of variables, and the comparative presentation of the results obtained with
different NNs (feedback vs. feed-forward) and different learning algorithms (Back-Propagation vs.
Levenberg–Marquardt). The simulation results show that the feedback neural network outperformed
the feed-forward neural network. The NN configuration is relatively flexible (with hidden layers
and a number of nodes on each of them), but the number of input and output nodes depends on
the fermentation process parameters. After laborious simulations, we determined that using pH
and CO2 as inputs reduces the prediction errors of the NN. Thus, besides the most commonly used
process parameters like fermentation temperature, time, the initial concentration of the substrate,
the substrate concentration, and the biomass concentration, by adding pH and CO2, we obtained
the optimum number of input nodes for the network. The optimal configuration in our case was
obtained after 1500 iterations using a NN with one hidden layer and 12 neurons on it, seven neurons
on the input layer, and one neuron as the output. If properly trained and validated, this model can be
used in future research to accurately predict steady-state and dynamic alcoholic fermentation process
behaviour and thereby improve process control performance.

Keywords: neural network; fermentation process; prediction application

1. Introduction

We live in an age of advanced technology from both a hardware and a software
viewpoint, the so called “centaur era” in which man and machine work together alongside
reality-augmenting computers to assist humans [1]. The ubiquity of computing shows
that technology is not expressed only as laptops, computers, or tablets but is also found in
almost everything that surrounds us, such as in communications, banking, and transport;
the food industry is no exception.

If the physical and chemical conditions (temperature, pH, aeration, etc.) are favourable,
a biotechnological process can induce the growth of a microorganism population, called a
biomass, in a vessel through the consumption of some nutrients (carbon, nitrogen, oxygen,
vitamins, etc.) that represent the substrate [2]. In the vessel (bioreactor), many biochemical
and biological reactions take place simultaneously. Usually, each elementary reaction is
catalysed by a protein (enzyme) and can form a specific product or metabolite. The aim of
such a process can be the production of bacteria, yeasts, etc.; the development of particular

Processes 2021, 9, 74. https://doi.org/10.3390/pr9010074 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-1385-6097
https://orcid.org/0000-0003-0278-4825
https://orcid.org/0000-0003-0509-5662
https://doi.org/10.3390/pr9010074
https://doi.org/10.3390/pr9010074
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9010074
https://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/9/1/74?type=check_update&version=2


Processes 2021, 9, 74 2 of 18

components (amino acids, medicines, marsh gas, etc.); or biological decontamination
(the biological consumption of a polluted substrate by the biomass).

The alcoholic fermentation process is a biotechnological process and is undoubtedly
one of the most important steps in winemaking [3,4]. The alcoholic fermentation in the
winemaking industry is a complex process that must account for particular characteris-
tics, including the following: batch fermentation on natural complex media, anaerobic
conditions due to CO2 production, the composition of the raw material, the low media
pH, levels of sulphur dioxide, inoculation with selected yeasts, and interactions with other
microorganisms.

Controlling the alcoholic fermentation process is a delicate task in winemaking for
several reasons: the process’s complexity, nonlinearity, and non-stationarity, which make
modeling and parameter estimation particularly difficult, and the scarcity of on-line mea-
surements of the component concentrations (essential substrates, biomass, and products of
interest) [5,6]. One of the core issues in industrial winemaking involves developing soft
sensors with outstanding performance and robustness to replace the hardware/physical
sensors in bioreactors. This would mitigate the disadvantages of real-time measurements,
nonlinearity constraints, and other complex mechanisms in the fermentation process [7].

An alternative to overcome the difficulties mentioned above is to use neural networks
(NNs), one of the fastest growing areas of artificial intelligence. With their massive learning
capabilities, NNs are able to approximate any continuous functions [8,9] and can be applied
to nonlinear process modeling [10,11]. If properly trained and validated, these models
can be used to accurately predict steady-state and dynamic process behaviour and thus
improve process control performance [12,13].

A NN model can offer information regarding the values of the state variables (as inputs:
biomass and temperature from the bioreactor; as outputs: alcohol and the substrate) useful
for a control system in the fermentation process. This is is due to the ability of a NN
to “learn” the shape of a relationship between variables from the data observed in the
training regime and generalize that relationship to the data zone requested in the test
regime. Such information is important especially in the exponential phase of biomass
production [14].

Most of the scientific literature indicates that because of the complexity of biotech-
nological systems regarding alcoholic fermentation, traditional optimization methods
utilizing mathematical models and statistically designed experiments are less effective,
especially on a production scale. Furthermore, Machine Learning (ML) offers an effec-
tive tool to predict biotechnological system behavior and empower the Learn phase in
the Design-Build-Test-Learn cycle used in biological engineering [15]. NNs provide a
range of powerful techniques for solving problems in sensor data analysis, fault detection,
process identification, and control and have been used in a diverse range of chemical
engineering applications [16]. Moreover, according to [17], even though both NN and
RSM (Response Surface Methodology) can efficiently model the effects of the interactions
between the input and the output parameters, the NN model is more robust for predictions
in non-linear systems. RSM disregards the “less important” variables based on a limited
understanding of their possible interactive effects on the bioprocess output. Since the
number of inputs in our experiment is not very large, we did not consider it appropriate to
use RSM, which prunes the design space, negatively affecting the results.

The main aim of this paper was to develop an application that can predict the charac-
teristic variable evolution of a system in the food industry to obtain indirect information
about the process regarding the state variables usable in an advanced control system for
the alcoholic fermentation batch process of white wine as a knowledge-based system.
To achieve this goal, we developed this study in the MATLAB environment and trained
a NN. We used the experimental data for an alcoholic fermentation process for white
winemaking and then, based on this NN, predicted the desirable variables for this process.

In this context, we created and trained different types of neural networks: feed-
forward and feedback. After implementation, the application was tested on different
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configurations of NNs to find the optimal solution from the perspectives of prediction
accuracy and simulation time.

The software application predicts the values of the variables that characterise the
alcoholic fermentation process of white wine to help food industry specialists more easily
control this process in winemaking and reduce production costs. The main benefit of our
application is that it can help experts, thereby reducing the need for many time-consuming
measurements and increasing the lifecycles of sensors in bioreactors. The novelty of this
research lies in the flexibility of its applications, the use of a great number of parameters,
and the comparative presentation of the results obtained with different NNs (feedback
vs. feed-forward) and different learning algorithms (Backpropagation vs. Levenberg–
Marquardt).

The application development stages are as follows:

• Characterizing the alcoholic fermentation process and its phases and mapping them
to the software

• Recording the values of the state variables in alcoholic fermentation in a database that
will be used in the prediction application

• Setting-up, training, and tuning a NN with the data obtained from the fermentation
processes

• Using the trained NN to predict, in different situations, the values of some variables
that characterise the alcoholic fermentation process.

The rest of the paper is organized into four sections. Section 2 is split into two parts:
The first provides a short background of NNs and their learning algorithms, while the
second briefly reviews state-of-the-art papers related to this study. Section 3 describes the
proposed approach—the materials and methods—for modelling the alcoholic fermentation
process in making white wines, implementing the NNs and measurement data. Section 4
analyses the experimental results obtained, providing some interpretations and possible
guidelines. Finally, Section 5 highlights the paper’s conclusions and suggests future
research directions.

2. Related Work
2.1. Short Background of NNs

From a purpose point of view, NNs can be viewed as part of the larger domain of
pattern recognition and Artificial Intelligence [18]. From the point of view of the method
applied, NNs fall within the parallel distributed processing domain. Generally, artificial
NNs try to simulate the neurophysiological structure of the human brain. The cortex is
composed of a large number of interconnected biological cells called neurons. Each neuron
receives signals from the neurons connected to it through the dendrites and conveys a
signal using the axon. A simple mathematical model for this process considers the output of
a unit as a function (the activation function, usually nonlinear) of an affine transformation
of the outputs of the connected units. The coefficients of the transformation (the intercepts
are called biases; the other coefficients are called weights) determine the response and
can be adapted depending on how the connection is activated during training. A NN is
an information processing system composed of a multitude of units (neurons) that are
strongly interconnected. Even though biological neurons are slower than logical gates
implemented in silica, neurons can accomplish tasks that are beyond the reach of the best
computers currently available. The brain compensates for the relatively slow operations of
its individual components by means of a large number of interconnections that are flexible
and malleable, allowing them to adapt to the environment, to handle vague or imprecise
information, and to generalise based on known situations and examples of unknown
situations in a robust, error-tolerant way [19].

2.1.1. NN Types

There are several types of artificial NNs classified according to different factors:

1. The topological structure of the neurons:
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• single-layer networks
• multilayer networks

2. The direction in which the signals flow:

• feed-forward networks
• feedback networks

In NNs, units are arranged in layers such that units in the same layer do not interact,
while the outputs of units in a layer are used as inputs into the units in the adjacent
layer. In Single-layer networks, there is only one layer; here, the inputs of the neurons
are the inputs of the entire network, and the outputs of the neurons are the outputs of the
network. Multilayer networks have more layers divided into three categories: the input
layer, the middle (hidden) layers, and the output layer.

Feed-forward networks (see Figure 1) are NNs in which the signal can only propa-
gate unidirectionally. In these networks, the output vector can be determined by direct
calculations from the input vector.
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Figure 1. The architecture of a generic multilayer neural network with two hidden layers.

Feedback neural networks (bidirectional or recurrent) are artificial NNs in which
the connections from the neurons are cyclical, allowing the signal to be conveyed in both
directions. This type of network uses a previous output as an additional input to calculate
the next output. In other words, the units of such networks have an internal state.

Recurrent networks (see Figure 2) are generally operated to classify data that form se-
quences, such as in text and images processing. Each element of the word/characters/images
sequence can depend on the framework created by the previous elements of the sequence,
but these networks are used also to predict some values from temporal data series (data pro-
cessed at successive time points) [13,19].
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2.1.2. The NNs Learning Mechanism

The learning capacity of NNs is one of their fundamental features. During training,
weights are adjusted based on the input and the output so that future network behaviour
will be consistent with previous experience. The training considered here will be of the
supervised type, meaning that the training process is based on some practice examples in
the form of input–output pairs. The network generates an output that is then compared
with the desired output from the practice set. If the generated output of the network does
not coincide with the desired output, it will be necessary to modify the weights and biases
from all layers of the network, starting with the output layer and working towards the
input layer. By contrast, in unsupervised learning, no labelled data are presumed to be
available [13].

To minimize the input error between the value generated by the network and the
desired value (the goal value) for a given collection of training examples, the direction
in which weights should be modified needs to be computed. The Backpropagation (BP)
algorithm uses the chain rule to compute the gradient of the error for each unit with
respect to its weights [20]. Then, an algorithm is needed to optimise the weights. Note that
performance is important because the changes induced by each training example need to
be smoothened and combined over the entire training set, which involves multiple runs.
The Levenberg–Marquardt (LM) algorithm is an iterative optimizational technique that
uses aspects of the gradient descent and Gauss-Newton method and is fast in practice,
as will be demonstrated in our experiments. The balance between these two methods is
governed by a damping term: When the damping term is large, the algorithm behaves
like the steepest descent method—slow but able to cope with highly nonlinear regions;
when the damping term is small, the LM step approximates the Gauss-Newton step for
faster convergence. The LM algorithm adaptively adjusts the damping term, reducing it
when the step effectively reduces the error and increasing it when it fails to do so [21,22].

2.2. Modeling the Alcoholic Fermentation Process of the White Wines with NN

Fermentative bioprocesses (like alcoholic fermentation) are basic processes in food en-
gineering [23]. However, because they are biological processes with complex and strongly
variable behaviour, the phenomena that govern them are poorly known, their significant
state variables are difficult to define, and their dynamic behaviour is generally strongly
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nonlinear. Consequently, the experiments carried out within relevant studies are long and
difficult to reproduce and the information concerning the state variables of the process are
difficult to obtain—usually by sampling and laboratory analyses due to a lack of adequate
sensors. Thus, in most cases, indirect measurements and determinations are needed.

A good solution to obtain indirect information from a process consists of building a
neuronal model, which—based on the experimental data available—can offer information
concerning the values of state variables, which can then be used in an automation control
system [2].

To realise a software application that can predict the evolution of the state variables
over time, the type of NN most suitable for this purpose must first be determined. In the lit-
erature, most articles suggest the use of feed-forward NNs with the Levenberg–Marquardt
learning algorithm [7,24].

As specified in Section 2.1, a NN can be feed-forward or recurrent. The latter NNs are
specifically used for data that show a strong dependence on each other—particularly text
sequences, pixels of an image, or time series data. Based on this observation, we also chose
to implement in our software application the possibility to predict the desired values with
a recurrent network because the experimental data that will be used to train the network
are a time series. The alcoholic fermentation process is a process that modifies the values of
the variables that characterise the grapes’ juice as a function of time and the current values
of these variables, so using a recurrent network is justified.

3. Materials and Methods

The organization of the experiments began with defining the process variables (accord-
ing to the activity diagram from the scheme presented in Figure 3). Based on a literature
review, we decided that the most appropriate tool to obtain indirect information about the
state variables in an alcoholic fermentation process is a NN. The next step was to follow
a manual design space exploration to determine the structure, type, and inputs of the
multilayer neural networks. The trial and error process was time-consuming and aimed to
reduce the prediction errors. We first applied original data and then used normalized data.
As inputs for the process, pH and CO2 were found to be the best options.
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Twenty datasets of experimental processes were used for the analysis, which was
done in the bioreactor in the research laboratory. The investigation of the experimental data
was conducted under four distinct control situations based on the substrate: mash malted,
mash malt enriched with vitamin B1 (thiamine), white grape must, and white grape must
enriched with vitamin B1 (thiamine). For the experiments, Saccharomyces oviformis and
Saccharomyces ellipsoideus wine yeasts were seeded on a culture medium [25]. The bioreactor
was equipped with pH, temperature, level, and stir speed controls, as well as dissolved
O2, released CO2, and O2 sensors and analysers. The cell concentration was calculated
based on three different parameters: optical density, dry substance, and total cell number.
The ethanol concentration was determined using HPLC-MS equipment, and the substrate
concentration was determined by spectrophotometric techniques. The operating conditions
were as follows: working volume—8 L; temperatures of 20, 22, 24, 26, and 28 ◦C; stirring
speed—150 rpm; pH—3.8; and influent glucose concentrations—180 g/L and 210 g/L.
The necessary oxygen was dissolved in must without aeration.

A controlling solution for the alcoholic fermentation process was developed using
a NN to obtain indirect information about the process. Figure 4 describes the general
framework using both the bioreactor and the software application to predict the process
control parameters. The NN used to predict the desired variables of the process was
trained with experimental data obtained from the fermentation process taking place in the
bioreactor equipped with transductors or by acquiring samples during fermentation and
analyzing them in the laboratory. The dataset contains the values of the following variables
that characterise the alcoholic fermentation process:

• T fermentation temperature [◦C]
• t time [h]
• S0 the initial concentration of the substrate [g/L]
• S the substrate concentration [g/L]
• X the biomass concentration [g/L]
• P the alcohol concentration (product) [g/L]
• the mixing speed [rpm];
• the optical density of the mass fermentation [AU]
• the pO2 [%]
• the pH
• the released O2 concentration [volume %]
• CCO2 the released CO2 concentration [volume %].

Based on all the training experimental data, we used four input–output configurations
for the NN, as presented in Table 1. These configurations contained the values of the
variables necessary to control the process and also some supplementary values to determine
a version where the prediction error is minimal.

Table 1. The four types of NN simulated (input & output parameters).

VERSION 1 VERSION 2 VERSION 3 VERSION 4

INPUT

T T T T
t t t t

S0 S0 S0 S0
S S X X
X X pH

pH CO2 released
CO2 released

OUTPUT P P
P P
S S
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3.1. User Guide and System Requirements

The software application used to predict the variables of the alcoholic fermentation
process was realised in the MATLAB environment. The graphical user interface (GUI)
illustrated in Figure 5 was designed in a user–friendly way, simplifying access to non-
specialists in computer science.

The graphical elements of the software application interface include several features.
The radio buttons are used to choose which type of NN will be used for training: a feedback
or feed-forward network. Through this software application, the user can accomplish the
following:

• Choose an Excel (*.xlsx) file in which the training data of the network are structured
• Choose the type of network to predict the variables
• Set up the iteration number that the network will execute in the training process
• Set up the neuron number for the hidden layer of the network
• Set up the hidden layer number of the network
• Comparatively visualize graphics of the desired output of the network and the real

output (see Figure 6)
• Predict the desired variable functions of several variables defined as the input network.

From a hardware point of view, the application needs to run properly on systems with
quad-core processors, 8 GB RAM, and 4–6 GB of HDD space.

We created an archive with the sources of the applications, which can be accessed at
the following web address http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/
AlcoholFermentationApplication.zip and downloaded to local computers by any interested
parties. Further details about the software’s use are provided by the README.txt file in the
archive. The software application was developed using the full MATLAB campus license
(MATLAB, Simulink and learning resources) provided for academic use, free of charge by
“Lucian Blaga” University of Sibiu with the full support of “Hasso Plattner” Foundation
Germany. For this reason, those who use our source must do so only for educational
purposes. Besides being free and easy to use, our tool provides the following advantages:
flexibility, extensibility, interactivity, and performance.

http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/AlcoholFermentationApplication.zip
http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/AlcoholFermentationApplication.zip
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3.1.1. The Training Phase

The NN training phase presumes the parsing of several experimental data (70% of
the data), the generation of several outputs based on the input data, and adjustment of the
weight values of the network as a function of the resulting errors among these outputs and
the desired outputs from the experimental data set.

At the end of the training phase, the graphical interface will display the errors obtained
from training data. These errors are calculated with the following equation:

E =
∑M

i=1(NetworkOutput − ScopeValue)2

M
(1)

where M is the pairs number of the input–output used in training.

3.1.2. The Testing Phase

After NN training phase comes the testing stage. This phase involves the use of several
experimental data (the other 30% of the experimental data) and generating several outputs
using a NN trained with those data. Then, the outputs are compared with the desired
outputs from the experimental data. Based on the differences between these outputs,
the errors of the network’s predictions of these values are calculated.

4. Results and Discussion

We simulated several situations with a range of the maximum number of iterations
and neurons from the hidden layer/layers to determine the best configuration of the NN.
Moreover, we used the first version of the neural network from Table 1 and then tested
the other versions. Each version of the training data has two variants. The first variant
contains the original training data without any change from the experimental data, and the
second version consists of the training data normalised with the following equation:

valuenormalised(i) =
value(i)− minimum

maximum − minimum
(2)
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where valuenormalised(i) is the normalised value corresponding to the element with the i
index from the original sequence, value(i) is the value of the element with the i index from
the original sequence, and minimum/maximum is the minimum/maximum value from
the original sequence.

In the realised simulations, using the fourth variant of the NN from Table 1, we varied
the following parameters: the number of neurons from the hidden layer, the number of the
iterations used for network training, the type of the NN, and the number of hidden layers.
For each configuration, the application was run 10 times to obtain the medium value in
each case because after the each run, the error values were different (the initial values of
the NN weights were randomly generated). The next simulations were performed using a
single hidden layer neural network and the Levenberg–Marquardt learning algorithm.

Figure 7 presents the results of the simulations obtained with the file that contained
the original training data (not normalised).

Processes 2021, 9, x FOR PEER REVIEW 12 of 19 

 

 

  

(a) (b) 

 

(c) 

Figure 7. The obtained results by varying the number of neurons on hidden layer for (a) 500; (b) 1000 and (c) 1500 itera-

tions. 

As can be observed in the above illustrations, the simulation that used 1500 iterations 

for the feedback network training with a hidden layer and 12 neurons had the lowest er-

ror. Thus, for the following predictions, we used a network trained in this way. 

For the simulations with the file that contained the original training data and nor-

malised data by varying number of neurons on hidden layer for 1500 iterations the results 

are presented in Figure 8. 

  

(a) (b) 

Figure 8. The obtained results by varying number of neurons on hidden layer for 1500 iterations: (a) original data; (b) 

normalised data. 

Figure 7. The obtained results by varying the number of neurons on hidden layer for (a) 500; (b) 1000 and (c) 1500 iterations.

As can be observed in the above illustrations, the simulation that used 1500 iterations
for the feedback network training with a hidden layer and 12 neurons had the lowest error.
Thus, for the following predictions, we used a network trained in this way.

For the simulations with the file that contained the original training data and nor-
malised data by varying number of neurons on hidden layer for 1500 iterations the results
are presented in Figure 8.
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Furthermore, we simulated feedback NNs by varying the number of hidden layers
and the learning algorithms. Based on these simulations, it was concluded that using
one hidden layer in the NN is the best solution because the simulation time increased
significantly with greater numbers of hidden layers.

Table 2 presents the simulation results using the Levenberg-Marquardt and Backprop-
agation algorithms, respectively. The best results with the lowest errors were generated
with the Levenberg-Marquardt algorithm.

Table 2. Simulation results obtained with the original data using the Levenberg-Marquardt and the
Backpropagation algorithms respectively.

No. of
Iterations

No. of
Hidden
Layers

No. of Neurons
on Hidden

Layers

Average Error

Levenberg-Marquardt
Algorithm

Backpropagation
Algorithm

1500 1 5 3.5498 5.6236
1500 1 6 2.2282 5.4599
1500 1 7 1.6872 4.5100
1500 1 8 1.7170 3.9243
1500 1 9 1.3018 4.6077
1500 1 10 1.9558 5.9983
1500 1 11 2.0424 3.8234
1500 1 12 0.9954 4.0962

By analysing the above graphics and tables, it can be concluded that the normalised
data generate the lowest Mean Square Error (MSE). However, even though the error is
lower with normalized data, this is not significant because from a technological point of
view, normalization does not change anything. Thus, the next simulations used the original
data (without normalization).

Based on all the simulations presented, the optimal configuration for the NN is
as follows:

• The network type: feedback
• The number of iterations: 1500
• The number of hidden layers: 1
• The number of neurons from the hidden layer: 12
• The learning algorithm: Levenberg-Marquardt.

In the following section, we present graphics with results obtained using all four
variants of the neural networks specified in Table 1. These graphics illustrate a comparison
between the NN output used for the tests and the experimental data.



Processes 2021, 9, 74 13 of 18

For the first three versions of the training and testing data in Table 1, all the used
values were expressed at the same temperature. For the fourth version, the data set used
for training and testing contained values expressed as multiple temperatures. In the next
figure (Figure 11), each temperature is graphically represented. For the fourth version from
Table 1, in Figure 11 (a1, b1, c1, and d1), a graphic illustrating the error between the NN
output and the experimental data is provided for each temperature.

By comparing the first two variants of NNs specified in Table 1 from perspective
of the alcohol concentration prediction in accordance with the real fermentation process
(see Figure 9), the best NN configuration was found to be the second version because its
latent phase is shorter, which is desirable. Furthermore, the alcohol concentration evolution
depends on the yeast type, the medium characteristics, the substrate concentration, and the
temperature. In variant two, we introduced two additional variables as inputs in the
training process: the pH and CO2 released concentration. The exponential growth phase in
the first variant begins after 131 h in comparison with the second variant, which begins
after 30 h.
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Figures 10 and 11 also illustrate the prediction of two parameters: the substrate con-
centration and the alcohol concentration. Based on the substrate consumption, the alcohol
is produced. Moreover, in Figure 11, the NN used the pH values and released CO2 concen-
tration as additional inputs; in this case, the training and testing data also contain values
from multiple fermentation processes (different temperatures).

The illustrations in Figure 10 are similar to those in Figure 11. Based on all these
combinations (Figure 11), the best results are obtained at a 20 ◦C fermentation process
temperature, at which the NN output is almost identical with the experimental data (Figure
11a2), and the errors also have the smallest values (Figure 11a1).

In all three Figure 9, Figure 10, Figure 11, the results show that the NN variants that
used the pH values and released CO2 concentration from the training data generated better
results regardless of the output number.

Since a comparison of our results with other papers would be inadequate due to the
lack of an international framework with standardized benchmarks, we chose to compare
the data obtained from the simulations with an analytical model developed in a previous
work by one of the authors to validate the artificial intelligence algorithms used.

In addition, because our tool is very flexible, we made some comparisons with learning
methods (NN with feed forward versus feedback or varying the number of layers and the
number of nodes in each layer).
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The results also show a good fit with the nonlinear mathematical model of the batch
wine alcoholic fermentation process previously developed by Sipos et al. [25]. The evolution
of the concentrations of substrate and alcohol predicted by the model are similar to the ob-
served data (Figure 12). By graphically comparing the experimental results in Figures 9–11
alongside the evolution resulting from the analytical model in Figure 12, we validated
the power of the neural networks, which are entirely data-based and require no previous
knowledge of the events that govern the process and are available for learning, analysis,
association, and adaptation. For completeness, the equations of the model developed by
Sipos et al. considering the latent and exponential growth phases are as follows:

• biomass:
dX/dt = µmax·(S/(KS + S))· exp(−KP·P)·X (3)

• alcohol:
dP/dt = qpmax·(S/(KSP + S))· exp

(
−Kpp·P

)
·X (4)

• substrate:
dS/dt = −(1/YXS ·dX/dt)− (1/YPS ·dP/dt) (5)

• CO2 released:

(
dCCO2

)
/dt = g·CCO2 ·k·S/(KSP + S)· ln(k·S/(KSP + S)·t) (6)

where µmax represents the maximum specific growth rate [1/h], KS is the substrate limi-
tation constant [g/L], KP is the alcohol limitation constant [g/L], qpmax is the maximum
specific alcohol production rate [g/(g·cells·h)], KSP is the constant in the substrate term for
ethanol production [g/L], Kpp is the constant of fermentation inhibition by ethanol [g/L],
YXS is the ratio of cells produced per the amount of glucose consumed for growth [g/g],
YPS is the ratio of ethanol produced per the amount of glucose consumed for fermentation
[g/g], g is the pseudo-constant of CO2, and k is the kinetic constant [1/h].
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Implications for Practice

In the following section, we describe a few advantages of our work. Based on the
graphically illustrated results, the proposed solution is useful at least at the educational
level when (masters) students are presented with the advantages of software applica-
tions/sensors in the fermentation process. The advantages include the following:

• faster identification of the moment of transition from the latent to the exponential
phase

• the use of additional process parameters such as pH and CO2 as inputs to the neural
network determining an improvement in the quality of the predictions

• the role of temperature in accelerating the fermentation
• the need for a rich set of data and test sets that are as standardized as possible
• understanding the differences between the learning mechanisms used
• the simple extensibility of the application by using genetic algorithms as a training

method or for the automatic design of the optimal structure of a neural network.

Moreover, for the companies that produce wine, with the help of this application, the
evolution of the quantitative characteristics of the alcoholic fermentation process for white
wines can be predicted. The purpose of predicting these process parameters is to obtain
information on state variables to automatically drive the process, especially when these
parameters cannot be directly measured.

5. Conclusions

This paper explored the development of an application by engineers in the food
industry for an alcoholic fermentation process that will reduce the laboratory measurement
time of the variables that characterise this process and provide a substitute for the sensors
that measure these variables, thereby increasing the lifecycle of sensors from the bioreactor.
By using this application, the specialists in this domain can simulate many situations
that emerge during the fermentation process and thus optimise the technological process
without using an industrial pilot.

Indirect information about the state variables in the alcoholic fermentation process
was determined after manual design space exploration of the structure, type, and inputs
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of a multilayer neural network. The conclusion was that the recurrent (feedback) NN
generated the best results. The optimal configuration that creates the minimum error for
this NN is 1500 iterations, 7 neurons on the input layer, one hidden layer, and 12 neurons
on the hidden layer. The second and fourth variants provided in Table 1, which outlines
the pH and CO2 concentrations released as inputs in the neural network, produced the
best results.

Further directions that use or improve this application could involve the following:

• A large dataset could be used for experiments or for other fermentation processes in
winemaking, while other machine learning techniques like Support Vector Machines
or Gauss Process Regression [14] could be explored.

• Due to the properties of the raw material’s variability together with the process’s com-
plexity and the nonlinearity and the non-stationary of the variables that characterise
the fermentation process, designing an appropriate control system will be adequate
using a system based on knowledge. The real-time information that led to automation
control can be derived from the process’s physical transducers, as well as from the
state observers and the developed NN application.

We intend to improve the neural network prediction accuracy by including prior
knowledge in the NN and by employing training mechanisms. One such direction involves
the implementation of Genetic Algorithms (GAs) to improve the performance of the neural
network. Gas can be used in two contexts: the first aims to find a vector of optimal
weights and biases for the initial configuration of the network instead of random weights;
the second context aims at determining the optimal structure of the neural network through
an automatic (not manual) design space exploration process—namely, the optimal number
of levels in the hidden layer, the number of nodes in each hidden layer, the appropriate
activation function, and the network type (feed forward/feedback).
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