17 research outputs found

    Case report: marfan syndrome (MFS) mimicking cutaneous vasculitis

    Get PDF
    Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by variants in the extracellular microfibril fibrillin (FBN1) gene. Here we report an FBN1 variant in a child with an unusual skin rash mimicking cutaneous vasculitis, and mild aortic root dilatation. The case was complicated by lack of typical skeletal MFS phenotype; and severe needle phobia preventing any blood testing for workup of suspected vasculitis. Therefore inflammatory markers, autoantibody profile and general hematology/biochemistry results were unknown. Diagnosis of MFS was made via genetic testing of a saliva sample alone using a next-generation sequencing (NGS) targeted gene panel designed to screen for monogenic forms of vasculitis and noninflammatory vasculopathic mimics. This revealed the patient was heterozygous for a pathogenic frameshift variant in FBN1; NM_000138, c.1211delC, p.(Pro404Hisfs*44), predicted to cause premature protein truncation leading to loss of function. The variant has not been detected in control populations and has previously been detected in individuals with MFS. This rapid diagnosis significantly impacted the patient management: avoidance of invasive investigations; avoidance of unnecessary immunosuppression; facilitating genetic counselling of the index case and family; and directly informing lifelong monitoring and ongoing treatment for aortic root involvement from MFS. This case further emphasizes the diagnostic utility of NGS early in the diagnostic workup of paediatric patients referred with suspected vasculitis, and we emphasize that MFS can present with cutaneous vasculitic-like features in the absence of the typical Marfanoid skeletal phenotype

    Genetic testing of Behçet’s disease using next-generation sequencing to identify monogenic mimics and HLA-B*51

    Get PDF
    Objective: Several monogenic autoinflammatory disorders and primary immunodeficiencies can present early in life with features that may be mistaken for Behçet's disease (BD). We aimed to develop a genetic analysis workflow to identify rare monogenic BD-like diseases and establish the contribution of HLA haplotype in a cohort of patients from the UK. // Methods: Patients with clinically suspected BD were recruited from four BD specialist care centres in the UK. All participants underwent whole exome sequencing (WES), and genetic analysis thereafter by 1. examining genes known to cause monogenic immunodeficiency, autoinflammation or vasculitis by virtual panel application; 2. scrutiny of variants prioritised by Exomiser using Human Phenotype Ontology (HPO); 3. identification of copy number variants using ExomeDepth; and 4. HLA-typing using OptiType. // Results: Thirty-one patients were recruited: median age 15 (4-52), and median disease onset age 5 (0-20). Nine/31 (29%) patients had monogenic disease mimicking BD: 5 cases of Haploinsufficiency of A20 with novel TNFAIP3 variants (p.T76I, p.M112Tfs*8, p.S548Dfs*128, p.C657Vfs*14, p.E661Nfs*36); 1 case of ISG15 deficiency with a novel nonsense variant (ISG15:p.Q16X) and 1p36.33 microdeletion; 1 case of Common variable immune deficiency (TNFRSF13B:p.A181E); and 2 cases of TNF receptor associated periodic syndrome (TNFRSF1A:p.R92Q). Of the remaining 22 patients, 8 (36%) were HLA-B*51 positive. // Conclusion: We describe a novel genetic workflow for BD, which can efficiently detect known and potentially novel monogenic forms of BD, whilst additionally providing HLA-typing. Our results highlight the importance of genetic testing before BD diagnosis, since this has impact on choice of therapy, prognosis, and genetic counselling

    EULAR recommendations for the management of ANCA-associated vasculitis : 2022 update

    Get PDF
    Funding Information: The authors wish to thank the librarian Oliver Weiner (Medical Department of the Kiel University Library, Kiel, Germany) for advice and assistance during the SLR. DJ was supported by the NIHR Cambridge Biomedical Research Centre. Publisher Copyright: © Author(s) (or their employer(s)) 2023. No commercial re-use. See rights and permissions. Published by BMJ.Background: Since the publication of the EULAR recommendations for the management of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) in 2016, several randomised clinical trials have been published that have the potential to change clinical care and support the need for an update. Methods: Using EULAR standardised operating procedures, the EULAR task force undertook a systematic literature review and sought opinion from 20 experts from 16 countries. We modified existing recommendations and created new recommendations. Results: Four overarching principles and 17 recommendations were formulated. We recommend biopsies and ANCA testing to assist in establishing a diagnosis of AAV. For remission induction in life-threatening or organ-threatening AAV, we recommend a combination of high-dose glucocorticoids (GCs) in combination with either rituximab or cyclophosphamide. We recommend tapering of the GC dose to a target of 5 mg prednisolone equivalent/day within 4-5 months. Avacopan may be considered as part of a strategy to reduce exposure to GC in granulomatosis with polyangiitis (GPA) or microscopic polyangiitis (MPA). Plasma exchange may be considered in patients with rapidly progressive glomerulonephritis. For remission maintenance of GPA/MPA, we recommend rituximab. In patients with relapsing or refractory eosinophilic GPA, we recommend the use of mepolizumab. Azathioprine and methotrexate are alternatives to biologics for remission maintenance in AAV. Conclusions: In the light of recent advancements, these recommendations provide updated guidance on AAV management. As substantial data gaps still exist, informed decision-making between physicians and patients remains of key relevance.Peer reviewe

    Neuroinflammation, autoinflammation, splenomegaly and anemia caused by bi-allelic mutations in IRAK4

    Get PDF
    We describe a novel, severe autoinflammatory syndrome characterized by neuroinflammation, systemic autoinflammation, splenomegaly, and anemia (NASA) caused by bi-allelic mutations in IRAK4. IRAK-4 is a serine/threonine kinase with a pivotal role in innate immune signaling from toll-like receptors and production of pro-inflammatory cytokines. In humans, bi-allelic mutations in IRAK4 result in IRAK-4 deficiency and increased susceptibility to pyogenic bacterial infections, but autoinflammation has never been described. We describe 5 affected patients from 2 unrelated families with compound heterozygous mutations in IRAK4 (c.C877T (p.Q293*)/c.G958T (p.D320Y); and c.A86C (p.Q29P)/c.161 + 1G>A) resulting in severe systemic autoinflammation, massive splenomegaly and severe transfusion dependent anemia and, in 3/5 cases, severe neuroinflammation and seizures. IRAK-4 protein expression was reduced in peripheral blood mononuclear cells (PBMC) in affected patients. Immunological analysis demonstrated elevated serum tumor necrosis factor (TNF), interleukin (IL) 1 beta (IL-1β), IL-6, IL-8, interferon α2a (IFN-α2a), and interferon β (IFN-β); and elevated cerebrospinal fluid (CSF) IL-6 without elevation of CSF IFN-α despite perturbed interferon gene signature. Mutations were located within the death domain (DD; p.Q29P and splice site mutation c.161 + 1G>A) and kinase domain (p.Q293*/p.D320Y) of IRAK-4. Structure-based modeling of the DD mutation p.Q29P showed alteration in the alignment of a loop within the DD with loss of contact distance and hydrogen bond interactions with IRAK-1/2 within the myddosome complex. The kinase domain mutation p.D320Y was predicted to stabilize interactions within the kinase active site. While precise mechanisms of autoinflammation in NASA remain uncertain, we speculate that loss of negative regulation of IRAK-4 and IRAK-1; dysregulation of myddosome assembly and disassembly; or kinase active site instability may drive dysregulated IL-6 and TNF production. Blockade of IL-6 resulted in immediate and complete amelioration of systemic autoinflammation and anemia in all 5 patients treated; however, neuroinflammation has, so far proven recalcitrant to IL-6 blockade and the janus kinase (JAK) inhibitor baricitinib, likely due to lack of central nervous system penetration of both drugs. We therefore highlight that bi-allelic mutation in IRAK4 may be associated with a severe and complex autoinflammatory and neuroinflammatory phenotype that we have called NASA (neuroinflammation, autoinflammation, splenomegaly and anemia), in addition to immunodeficiency in humans

    Clinical impact of a targeted next-generation sequencing gene panel for autoinflammation and vasculitis.

    Get PDF
    BACKGROUND: Monogenic autoinflammatory diseases (AID) are a rapidly expanding group of genetically diverse but phenotypically overlapping systemic inflammatory disorders associated with dysregulated innate immunity. They cause significant morbidity, mortality and economic burden. Here, we aimed to develop and evaluate the clinical impact of a NGS targeted gene panel, the "Vasculitis and Inflammation Panel" (VIP) for AID and vasculitis. METHODS: The Agilent SureDesign tool was used to design 2 versions of VIP; VIP1 targeting 113 genes, and a later version, VIP2, targeting 166 genes. Captured and indexed libraries (QXT Target Enrichment System) prepared for 72 patients were sequenced as a multiplex of 16 samples on an Illumina MiSeq sequencer in 150bp paired-end mode. The cohort comprised 22 positive control DNA samples from patients with previously validated mutations in a variety of the genes; and 50 prospective samples from patients with suspected AID in whom previous Sanger based genetic screening had been non-diagnostic. RESULTS: VIP was sensitive and specific at detecting all the different types of known mutations in 22 positive controls, including gene deletion, small INDELS, and somatic mosaicism with allele fraction as low as 3%. Six/50 patients (12%) with unclassified AID had at least one class 5 (clearly pathogenic) variant; and 11/50 (22%) had at least one likely pathogenic variant (class 4). Overall, testing with VIP resulted in a firm or strongly suspected molecular diagnosis in 16/50 patients (32%). CONCLUSIONS: The high diagnostic yield and accuracy of this comprehensive targeted gene panel validate the use of broad NGS-based testing for patients with suspected AID

    Viewpoint: Establishing rapport: the GP without a smile

    No full text

    Table_1_A rapid turnaround gene panel for severe autoinflammation: Genetic results within 48 hours.docx

    No full text
    There is an important unmet clinical need for fast turnaround next generation sequencing (NGS) to aid genetic diagnosis of patients with acute and sometimes catastrophic inflammatory presentations. This is imperative for patients who require precise and targeted treatment to prevent irreparable organ damage or even death. Acute and severe hyper- inflammation may be caused by primary immunodeficiency (PID) with immune dysregulation, or more typical autoinflammatory diseases in the absence of obvious immunodeficiency. Infectious triggers may be present in either immunodeficiency or autoinflammation. We compiled a list of 25 genes causing monogenetic immunological diseases that are notorious for their acute first presentation with fulminant inflammation and which may be amenable to specific treatment, including hemophagocytic lymphohistiocytosis (HLH); and autoinflammatory diseases that can present with early-onset stroke or other irreversible neurological inflammatory complications. We designed and validated a pipeline that enabled return of clinically actionable results in hours rather than weeks: the Rapid Autoinflammation Panel (RAP). We demonstrated accuracy of this new pipeline, with 100% sensitivity and 100% specificity. Return of results to clinicians was achieved within 48-hours from receiving the patient’s blood or saliva sample. This approach demonstrates the potential significant diagnostic impact of NGS in acute medicine to facilitate precision medicine and save “life or limb” in these critical situations.</p

    Immunoglobulin replacement for secondary immunodeficiency after B-cell targeted therapies in autoimmune rheumatic disease: Systematic literature review.

    Get PDF
    BACKGROUND: Consensus guidelines are not available for the use of immunoglobulin replacement therapy (IGRT) in patients developing iatrogenic secondary antibody deficiency following B-cell targeted therapy (BCTT) in autoimmune rheumatic disease. OBJECTIVES: To evaluate the role of IGRT to manage hypogammaglobulinemia following BCTT in autoimmune rheumatic disease (AIRD). METHODS: Using an agreed search string we performed a systematic literature search on Medline with Pubmed as vendor. We limited the search to English language papers with abstracts published over the last 10 years. Abstracts were screened for original data regarding hypogammaglobulinemia following BCTT and the use of IGRT for hypogammaglobulinemia following BCTT. We also searched current recommendations from national/international organisations including British Society for Rheumatology, UK Department of Health, American College of Rheumatology, and American Academy of Asthma, Allergy and Immunology. RESULTS: 222 abstracts were identified. Eight papers had original relevant data that met our search criteria. These studies were largely retrospective cohort studies with small patient numbers receiving IGRT. The literature highlights the induction of a sustained antibody deficiency, risk factors for hypogammaglobulinemia after BCTT including low baseline serum IgG levels, how to monitor patients for the development of hypogammaglobulinemia and the limited evidence available on intervention thresholds for commencing IGRT. CONCLUSION: The benefit of BCTT needs to be balanced against the risk of inducing a sustained secondary antibody deficiency. Consensus guidelines would be useful to enable appropriate assessment prior to and following BCTT in preventing and diagnosing hypogammaglobulinemia. Definitions for symptomatic hypogammaglobulinemia, intervention thresholds and treatment targets for IGRT, and its cost-effectiveness are required

    Recommendations for the management of secondary hypogammaglobulinaemia due to B cell targeted therapies in autoimmune rheumatic diseases.

    Get PDF
    OBJECTIVES: The association of B cell targeted therapies with development of hypogammaglobulinaemia and infection is increasingly recognized. Our aim was to develop consensus recommendations for immunoglobulin replacement therapy for management of hypogammaglobulinaemia following B cell targeted therapies in autoimmune rheumatic diseases. METHODS: A modified Delphi exercise involved a 17-member Taskforce committee, consisting of immunologists, rheumatologists, nephrologists, haematologists, a gastroenterologist, an immunology specialist nurse and a patient representative. The first round identified the most pertinent topics to address in the recommendations. A search string was agreed upon for the identification of publications in PubMed focusing on these areas, for a systematic literature review. Original data was presented from this review to the Taskforce committee. Recommendations from the British Society for Rheumatology, the UK Department of Health, EULAR, the ACR, and the American Academy of Allergy, Asthma, and Immunology were also reviewed. The evidence was discussed in a face-to-face meeting to formulate recommendation statements. The levels of evidence and statements were graded according to Scottish Intercollegiate Guidelines Network methodology. RESULTS: Three overarching principles, eight recommendation statements and a research agenda were formulated. The Taskforce committee voted on these statements, achieving 82-100% agreement for each recommendation. The strength of the recommendations was restricted by the low quality of the available evidence, with no randomized controlled trial data. The recommendations cover risk factors, monitoring, referral for hypogammaglobulinaemia; indications, dosage and discontinuation of immunoglobulin replacement therapy. CONCLUSION: These are the first recommendations specifically formulated for B cell targeted therapies related to hypogammaglobulinaemia in autoimmune rheumatic diseases. The recommendations are to aid health-care professionals with clinical decision making for patients with hypogammaglobulinaemia
    corecore