168 research outputs found

    An innately dangerous balancing act: intestinal homeostasis, inflammation, and colitis-associated cancer

    Get PDF
    Inflammatory bowel disease (IBD) is characterized by dysregulated immune responses to the intestinal microbiota, and by chronic intestinal inflammation. Several recent studies demonstrate the importance of innate microbial recognition by immune and nonimmune cells in the gut. Paradoxically, either diminished or exacerbated innate immune signaling may trigger the breakdown of intestinal homeostasis, leading to IBD and colitis-associated cancer (CAC). This dichotomy may reflect divergent functional roles for immune sensing in intestinal epithelial cells and leukocytes, which may vary with distinct disease mechanisms

    Genetic and environmental factors shape the host response to Helicobacter hepaticus: insights into IBD pathogenesis

    Get PDF
    Pathobionts are members of the gut microbiota with the capacity to cause disease when there is malfunctioning intestinal homeostasis. These organisms are thought to be major contributors to the pathogenesis of inflammatory bowel disease (IBD), a group of chronic inflammatory disorders driven by dysregulated responses towards the microbiota. Over two decades have passed since the discovery of Helicobacter hepaticus, a mouse pathobiont which causes colitis in the context of immune deficiency. During this time, we have developed a detailed understanding of the cellular players and cytokine networks which drive H. hepaticus immunopathology. However, we are just beginning to understand the microbial factors that enable H. hepaticus to interact with the host and influence colonic health and disease. Here we review key H. hepaticus-host interactions, their relevance to other exemplar pathobionts and how when maladapted they drive colitis. Further understanding of these pathways may offer new therapeutic approaches for IBD

    Gpr83 expression is not required for the maintenance of intestinal immune homeostasis and regulation of T-cell-dependent colitis

    Get PDF
    Regulatory T (TR) cells are integral to the maintenance of intestinal homeostasis, where an intricate balance between tolerance and immunity must be maintained. Recently, studies have focused on the identification of molecules involved in the function and/or development of TR cells. One such molecule, the G-protein coupled receptor Gpr83, has been identified through gene expression analysis as being overexpressed within thymic and peripheral naturally arising regulatory T (nTR) cell populations. The aim of this study was to further define the characteristics of Gpr83 expression and to investigate the role of Gpr83 in TR-cell development and function through the generation and analysis of Gpr83-deficient mice. Following activation, naïve CD4+ T cells induce Gpr83 expression in a transforming growth factor (TGF)-β dependent manner. Rather than being a general marker of activation, Gpr83 expression could only be detected in cells also expressing forkhead/winged helix transcription factor (Foxp3), further supporting the association of Gpr83 with the regulatory cell phenotype. Mice deficient in Gpr83 expression developed normally and did not display signs of inflammatory disease. Thymic nTR-cell development was unaffected by a lack of Gpr83 expression and peripheral nTR-cell homeostasis was normal when compared with that of wild-type mice. Gpr83 expression was dispensable for the regulatory activity of nTR cells as Gpr83-deficient nTR cells could suppress the development of disease in a T-cell transfer model of colitis. These results suggest a redundant role for Gpr83 in the function of TR cells in this model of disease. Further studies are required to determine the role of Gpr83 in TR-cell biology

    An Essential Role for Interleukin 10 in the Function of Regulatory T Cells That Inhibit Intestinal Inflammation

    Get PDF
    A T helper cell type 1–mediated colitis develops in severe combined immunodeficient mice after transfer of CD45RBhigh CD4+ T cells and can be prevented by cotransfer of the CD45RBlow subset. The immune-suppressive activities of the CD45RBlow T cell population can be reversed in vivo by administration of an anti-transforming growth factor β antibody. Here we show that interleukin (IL)-10 is an essential mediator of the regulatory functions of the CD45RBlow population. This population isolated from IL-10–deficient (IL-10−/−) mice was unable to protect from colitis and when transferred alone to immune-deficient recipients induced colitis. Treatment with an anti–murine IL-10 receptor monoclonal antibody abrogated inhibition of colitis mediated by wild-type (WT) CD45RBlow CD4+ cells, suggesting that IL-10 was necessary for the effector function of the regulatory T cell population. Inhibition of colitis by WT regulatory T cells was not dependent on IL-10 production by progeny of the CD45RBhigh CD4+ cells, as CD45RBlow CD4+ cells from WT mice were able to inhibit colitis induced by IL-10−/− CD45RBhigh CD4+ cells. These findings provide the first clear evidence that IL-10 plays a nonredundant role in the functioning of regulatory T cells that control inflammatory responses towards intestinal antigens

    CD4+CD25+ TR Cells Suppress Innate Immune Pathology Through Cytokine-dependent Mechanisms

    Get PDF
    CD4+CD25+ regulatory T (TR) cells can inhibit a variety of autoimmune and inflammatory diseases, but the precise mechanisms by which they suppress immune responses in vivo remain unresolved. Here, we have used Helicobacter hepaticus infection of T cell–reconstituted recombination-activating gene (RAG)−/− mice as a model to study the ability of CD4+CD25+ TR cells to inhibit bacterially triggered intestinal inflammation. H. hepaticus infection elicited both T cell-mediated and T cell–independent intestinal inflammation, both of which were inhibited by adoptively transferred CD4+CD25+ TR cells. T cell–independent pathology was accompanied by activation of the innate immune system that was also inhibited by CD4+CD25+ TR cells. Suppression of innate immune pathology was dependent on T cell–derived interleukin 10 and also on the production of transforming growth factor β. Thus, CD4+CD25+ TR cells do not only suppress adaptive T cell responses, but are also able to control pathology mediated by innate immune mechanisms

    Cytotoxic T Lymphocyte–Associated Antigen 4 Plays an Essential Role in the Function of Cd25+Cd4+ Regulatory Cells That Control Intestinal Inflammation

    Get PDF
    It is now clear that functionally specialized regulatory T (Treg) cells exist as part of the normal immune repertoire, preventing the development of pathogenic responses to both self- and intestinal antigens. Here, we report that the Treg cells that control intestinal inflammation express the same phenotype (CD25+CD45RBlowCD4+) as those that control autoimmunity. Previous studies have failed to identify how CD25+ Treg cells function in vivo. Our studies reveal that the immune-suppressive function of these cells in vivo is dependent on signaling via the negative regulator of T cell activation cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), as well as secretion of the immune-suppressive cytokine transforming growth factor β. Strikingly, constitutive expression of CTLA-4 among CD4+ cells was restricted primarily to Treg cells, suggesting that CTLA-4 expression by these cells is involved in their immune-suppressive function. These findings raise the possibility that Treg cell function contributes to the immune suppression characteristic of CTLA-4 signaling. Identification of costimulatory molecules involved in the function of Treg cells may facilitate further characterization of these cells and development of new therapeutic strategies for the treatment of inflammatory diseases

    Gut microbiota: sculptors of the intestinal stem cell niche in health and inflammatory bowel disease

    Get PDF
    Intestinal epithelium represents a dynamic and diverse cellular system that continuously interacts with gut commensals and external cues. Intestinal stem cells, which lie at the heart of epithelial renewal and turnover, proliferate to maintain a steady stem cell population and differentiate to form functional epithelial cell types. This rather sophisticated assembly-line is maintained by an elaborate micro-environment, sculpted by a myriad of host and gut microbiota-derived signals, forming an intestinal stem cell niche. This complex, yet crucial signaling niche undergoes dynamic changes during homeostasis and chronic intestinal inflammation. Inflammatory bowel disease refers to a chronic inflammatory response toward pathogenic or commensal microbiota, in a genetically susceptible host. Compositional and functional alterations in gut microbiota are pathognomonic of IBD. The present review highlights the modulatory role of gut microbiota on the intestinal stem cell niche during homeostasis and inflammatory bowel disease. We discuss the mechanisms of direct action of gut commensals (through microbiota-derived or microbiota-influenced metabolites) on ISCs, followed by their effects via other epithelial and immune cell types

    Helicobacter hepaticus infection in BALB/c mice abolishes subunit-vaccine-induced protection against M. tuberculosis

    Get PDF
    AbstractBCG, the only licensed vaccine against tuberculosis (TB), provides geographically variable protection, an effect ascribed to exposure to environmental mycobacteria (EM). Here we show that altering the intestinal microbiota of mice by early-life infection with the commensal bacterium Helicobacter hepaticus (Hh) increases their susceptibility to challenge with Mycobacterium tuberculosis (Mtb). Furthermore Hh-infected mice immunised parenterally with the recombinant subunit vaccine, human adenovirus type 5 expressing the immunodominant antigen 85A of Mtb (Ad85A), display a reduced lung immune response and protection against Mtb challenge is also reduced. Expression of interleukin 10 (IL10) messenger RNA is increased in the colon of Hh infected mice. Treatment of Hh-infected Ad85A-immunised mice with anti-IL10 receptor antibody, following challenge with Mtb, restores the protective effect of the vaccine. These data show for the first time that alteration of the intestinal microbiota by addition of a single commensal organism can profoundly influence protection induced by a TB subunit vaccine via an IL10-dependent mechanism, a result with implications for the deployment of such vaccines in the field

    T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells

    Get PDF
    CD4+CD25+ regulatory T (T reg) cells play a pivotal role in control of the immune response. Transforming growth factor-β (TGF-β) has been shown to be required for T reg cell activity; however, precisely how it is involved in the mechanism of suppression is poorly understood. Using the T cell transfer model of colitis, we show here that CD4+CD45RBhigh T cells that express a dominant negative TGF-β receptor type II (dnTβRII) and therefore cannot respond to TGF-β, escape control by T reg cells in vivo. CD4+CD25+ T reg cells from the thymus of dnTβRII mice retain the ability to inhibit colitis, suggesting that T cell responsiveness to TGF-β is not required for the development or peripheral function of thymic-derived T reg cells. In contrast, T reg cell activity among the peripheral dnTβRII CD4+CD25+ population is masked by the presence of colitogenic effector cells that cannot be suppressed. Finally, we show that CD4+CD25+ T reg cells develop normally in the absence of TGF-β1 and retain the ability to suppress colitis in vivo. Importantly, the function of TGF-β1−/− T reg cells was abrogated by anti–TGF-β monoclonal antibody, indicating that functional TGF-β can be provided by a non–T reg cell source

    A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism

    Get PDF
    Foxp3+ regulatory T (T reg) cells play a key role in controlling immune pathological re actions. Many develop their regulatory activity in the thymus, but there is also evidence for development of Foxp3+ T reg cells from naive precursors in the periphery. Recent studies have shown that transforming growth factor (TGF)-β can promote T reg cell development in culture, but little is known about the cellular and molecular mechanisms that mediate this pathway under more physiological conditions. Here, we show that after antigen activation in the intestine, naive T cells acquire expression of Foxp3. Moreover, we identify a population of CD103+ mesenteric lymph node dendritic cells (DCs) that induce the devel opment of Foxp3+ T reg cells. Importantly, promotion of T reg cell responses by CD103+ DCs is dependent on TGF-β and the dietary metabolite, retinoic acid (RA). These results newly identify RA as a cofactor in T reg cell generation, providing a mechanism via which functionally specialized gut-associated lymphoid tissue DCs can extend the repertoire of T reg cells focused on the intestine
    corecore