734 research outputs found

    The influence of recycled aggregates from precast elements on the mechanical properties of structural self-compacting concrete

    Get PDF
    Recycled Aggregates (RA) from structural precast elements and the performance of Self-Compacting Concrete (SCC) containing RA in percentage substitutions of 20%, 50% and 100% are described in this paper. Three Control Concretes (CC-30, CC-37.5, CC-45) manufactured with Natural Aggregates (NA), and their corresponding Recycled Aggregate Concretes (RAC-20, RAC-50, RAC-100) are evaluated in terms of physical and mechanical properties. The in-fresh properties results (flowability, viscosity and passing ability) of the RAC were suitable for their use as SSC. Furthermore, the tests of compressive, splitting tensile and flexural strength, as well as density, porosity, water absorption, ultrasonic pulse velocity, stiffness, and both dynamic and static modulus provided results close to those of the SCC with NA, and in compliance with the requirements of current regulations. The recycling process that takes place in the precast factory supposes an economical improvement and an important contribution to global sustainability, in accordance with the concept of the circular economy.The authors wish to express their gratitude for having contributed to the financing of this research to: Junta de Castilla y LeĂłn (Regional Government) for funding UIC-231 through project BU119P17; MINECO for funding through project BIA2014-55576-C2-1-R; and FEDER (European Regional Development Funds). Moreover, we are grateful to the precast concrete company Artepref for having collaborated with the present research work

    Pediatric Left Posteroseptal Accessory Pathway Ablation from Giant Coronary Sinus with Persistent Left Superior Cava

    Full text link
    We report a pediatric patient with persistent left superior vena cava and a D-transposition of great arteries, which is an uncommon relation. It is crucial to know the anatomy of the persistent left superior vena cava and the dilated coronary sinus to plan the mapping techniques in cases of posterior accessory pathways

    Exact results for static and radiative fields of a quark in N=4 super Yang-Mills

    Full text link
    In this work (which supersedes our previous preprint arXiv:1112.2345) we determine the expectation value of the N=4$ SU(N) SYM Lagrangian density operator in the presence of an infinitely heavy static particle in the symmetric representation of SU(N), by means of a D3-brane probe computation. The result that we obtain coincides with two previous computations of different observables, up to kinematical factors. We argue that these agreements go beyond the D-brane probe approximation, which leads us to propose an exact formula for the expectation value of various operators. In particular, we provide an expression for the total energy loss by radiation of a heavy particle in the fundamental representation.Comment: 14 pages. This submission supersedes our previous preprint arXiv:1112.2345. v2: numerical factors fixed, minor clarifications, added reference

    Devices and Fibers for Ultrawideband Optical Communications

    Get PDF
    Wavelength-division multiplexing (WDM) has historically enabled the increase in the capacity of optical systems by progressively populating the existing optical bandwidth of erbium-doped fiber amplifiers (EDFAs) in the C-band. Nowadays, the number of channels—needed in optical systems—is approaching the maximum capacity of standard C-band EDFAs. As a result, the industry worked on novel approaches, such as the use of multicore fibers, the extension of the available spectrum of the C-band EDFAs, and the development of transmission systems covering C- and L-bands and beyond. In the context of continuous traffic growth, ultrawideband (UWB) WDM transmission systems appear as a promising technology to leverage the bandwidth of already deployed optical fiber infrastructure and sustain the traffic demand for the years to come. Since the pioneering demonstrations of UWB transmission a few years ago, long strides have been taken toward UWB technologies. In this review article, we discuss how the most recent advances in the design and fabrication of enabling devices, such as lasers, amplifiers, optical switches, and modulators, have improved the performance of UWB systems, paving the way to turn research demonstrations into future products. In addition, we also report on the advances in UWB optical fibers, such as the recently introduced nested antiresonant nodeless fibers (NANFs), whose future implementations could potentially provide up to 300-nm-wide bandwidth at less than 0.2 dB/km loss

    Populating the swampland: the case of U(1)^496 and E_8 x U(1)^248

    Full text link
    For d=10 N=1 SUGRA coupled to d=10 N=1 SYM, anomaly cancellation places severe constraints on the allowed gauge groups. Besides the ones known to appear in string theory, only U(1)^496 and E_8 x U(1)^248 are allowed. There are no known theories of quantum gravity that reduce in some limit to these two last supergravity theories, and in this note I present some evidence that those quantum theories might not exist. The first observation is that, upon compactification, requring that the quantum theory possesses a moduli space with finite volume typically implies the existence of singularities where the 4d gauge group is enhanced, but for these two theories that gauge enhancement is problematic from the 10d point of view. I also point out that while these four supergravity theories present repulson-type singularities, the known mechanism that repairs those singularities for the first two - the non-Abelian enhancon - is not available for the last two theories. In short, these two supergravity theories might be too Abelian for their own good.Comment: 12 page

    A deformation of AdS_5 x S^5

    Full text link
    We analyse a one parameter family of supersymmetric solutions of type IIB supergravity that includes AdS_5 x S^5. For small values of the parameter the solutions are causally well-behaved, but beyond a critical value closed timelike curves (CTC's) appear. The solutions are holographically dual to N=4 supersymmetric Yang-Mills theory on a non-conformally flat background with non-vanishing R-currents. We compute the holographic energy-momentum tensor for the spacetime and show that it remains finite even when the CTC's appear. The solutions, as well as the uplift of some recently discovered AdS_5 black hole solutions, are shown to preserve precisely two supersymmetries.Comment: 16 pages, v2: typos corrected and references adde

    Clinical Genetics of Inherited Arrhythmogenic Disease in the Pediatric Population

    Full text link
    Sudden death is a rare event in the pediatric population but with a social shock due to its presentation as the first symptom in previously healthy children. Comprehensive autopsy in pediatric cases identify an inconclusive cause in 40-50% of cases. In such cases, a diagnosis of sudden arrhythmic death syndrome is suggested as the main potential cause of death. Molecular autopsy identifies nearly 30% of cases under 16 years of age carrying a pathogenic/potentially pathogenic alteration in genes associated with any inherited arrhythmogenic disease. In the last few years, despite the increasing rate of post-mortem genetic diagnosis, many families still remain without a conclusive genetic cause of the unexpected death. Current challenges in genetic diagnosis are the establishment of a correct genotype-phenotype association between genes and inherited arrhythmogenic disease, as well as the classification of variants of uncertain significance. In this review, we provide an update on the state of the art in the genetic diagnosis of inherited arrhythmogenic disease in the pediatric population. We focus on emerging publications on gene curation for genotype-phenotype associations, cases of genetic overlap and advances in the classification of variants of uncertain significance. Our goal is to facilitate the translation of genetic diagnosis to the clinical area, helping risk stratification, treatment and the genetic counselling of families

    BREAKING THE PARADIGM: MARINE SEDIMENTS HOLD TWO-FOLD MICROPLASTICS THAN SEA SURFACE WATERS AND ARE DOMINATED BY FIBERS

    Get PDF
    Marine compartments are often considered independent environments in studies on plastic pollution (Ali et al., 2021). Consequently, little is known about microplastic (MPs) distribution amongst those habitats closely linked. Here, we perform an interactive assessment of MPs abundance and composition from the pelagic habitat to beaches integrating shallow seafloor sediments of a coastal Mediterranean marine protected area and evaluating MPs ingestion in holothurians, echinoderms, molluscs, and fishes inhabiting the area. We observed a gradient in the accumulation of MPs from the sea surface (0.17 ± 0.39 MPs/m2) to the seafloor (76 ± 108 MPs/m2) and beach sediment (13418 ± 28787 MPs/m2), with a skip of two orders of magnitude. Microplastic abundances fit with those reported for more anthropized Mediterranean areas and suggest coastal environments as potential debris sinking areas. Fibers dominate all the studied habitats. Holothurians showed the highest general MPs and fibers ingestion occurrence (91%), with greater values (9.48 ± 8.05 MPs/individual and 8.24 ± 7.95 fibers/individual) than those reported previously (Bulleri et al., 2021). Considering ecological key role, species distribution, and MPs ingestion values, we suggest Holothuroidea as suitable bioindicators for plastic pollution, particularly for fibers. Fibers are composed primarily of cellulose acetate (29%), whereas styrofoam of polystyrene (64%), and films, fragments, and filaments of a variable percentage of polyethylene and polypropylene. Differences found in the polymer composition amongst plastics´ morphologies are reflected in the variability observed between habitats and marine organisms. Particularly the polymer composition of fibers coincides with that of one of the MPs ingested by invertebrates. Results suggest that shape is a key plastic characteristic in determining polymer distribution patterns along with habitats and in marine species. Finally, this study highlights once again the importance and urgency of local and global actions needed to mitigate plastic pollution and particularly fiber release into the marine environment

    An Exact String Theory Model of Closed Time-Like Curves and Cosmological Singularities

    Full text link
    We study an exact model of string theory propagating in a space-time containing regions with closed time-like curves (CTCs) separated from a finite cosmological region bounded by a Big Bang and a Big Crunch. The model is an non-trivial embedding of the Taub-NUT geometry into heterotic string theory with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of alpha' corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory, together with the emergence of a region of space with Euclidean signature bounded by time-like curvature singularities. Although such remarks are premature, their persistence in the exact geometry is suggestive that string theory theory is able to make physical sense of the Milne/Misner singularities and the CTCs, despite their pathological character in General Relativity. This may also support the possibility that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-Big-Bang cosmological scenarios.Comment: 37 pages, 4 figures. V2: discussion of computation of metric refined, references adde
    • …
    corecore