89 research outputs found

    Ownership and governance of Finnish infrastructure networks

    Get PDF
    This research report investigates and analyzes the pros and cons of different ownership and governance models of infrastructure networks. The report covers most infrastructure networks: transportation networks (roads, streets, railways, airports, harbors) and utility networks (water and sewage, energy and electricity). There is no unifying solution that would fit all sectors in terms of the most efficient ownership model. However, in many sectors reforms are needed towards more elaborated client-supplier frameworks to ensure greater efficiency and cost transparency. Surprisingly, traditional organizational structures do not seem to impact on financial returns of those networks that provide user-financed services. In Finland technical infrastructure networks are typically owned, administered and managed by the public sector as they are considered public goods and critical assets for the wellbeing of citizens. In many ways the sectors have remained passive and with little interaction towards more innovative service provision solutions or organizational models. In terms of developing the networks’ services and their profitability, the greatest business opportunity would result from allowing open entry to market and competition in contracting. This would mean abandonment of negotiated contracts and proactive evolution of functional markets. The scope of business opportunities will increase in all aspect of service delivery; from management to engineering and economic studies, asset management systems, construction and maintenance works, and the labor to do all that

    Design and development of poly-L/D-lactide copolymer and barium titanate nanoparticle 3D composite scaffolds using breath figure method for tissue engineering applications

    Get PDF
    In tissue engineering, the scaffold topography influences the adhesion, proliferation, and function of cells. Specifically, the interconnected porosity is crucial for cell migration and nutrient delivery in 3D scaffolds. The objective of this study was to develop a 3D porous composite scaffold for musculoskeletal tissue engineering applications by incorporating barium titanate nanoparticles (BTNPs) into a poly-L/D-lactide copolymer (PLDLA) scaffold using the breath figure method. The porous scaffold fabrication utilised 96/04 PLDLA, dioleoyl phosphatidylethanolamine (DOPE), and different types of BTNPs, including uncoated BTNPs, Al2O3-coated BTNPs, and SiO2-coated BTNPs. The BTNPs were incorporated into the polymer scaffold, which was subsequently analysed using field emission scanning electron microscopy (FE-SEM). The biocompatibility of each scaffold was tested using ovine bone marrow stromal stem cells. The cell morphology, viability, and proliferation were evaluated using FE-SEM, LIVE/DEAD staining, and Prestoblue assay. Porous 3D composite scaffolds were successfully produced, and it was observed that the incorporation of uncoated BTNPs increased the average pore size from 1.6 mu m (PLDLA) to 16.2 mu m (PLDLA/BTNP). The increased pore size in the PLDLA/BTNP scaffolds provided a suitable porosity for the cells to migrate inside the scaffold, while in the pure PLDLA scaffolds with their much smaller pore size, cells elongated on the surface. To conclude, the breath figure method was successfully used to develop a PLDLA/BTNP scaffold. The use of uncoated BTNPs resulted in a composite scaffold with an optimal pore size while maintaining the honeycomb-like structure. The composite scaffolds were biocompatible and yielded promising structures for future tissue engineering applications.Peer reviewe

    Organometallic iridium(III) anticancer complexes with new mechanisms of action: NCI-60 screening, mitochondrial targeting, and apoptosis

    Get PDF
    Platinum complexes related to cisplatin, cis-[PtCl2(NH3)2], are successful anticancer drugs; however, other transition metal complexes offer potential for combating cisplatin resistance, decreasing side effects, and widening the spectrum of activity. Organometallic half-sandwich iridium (IrIII) complexes [Ir(Cpx)(XY)Cl]+/0 (Cpx = biphenyltetramethylcyclopentadienyl and XY = phenanthroline (1), bipyridine (2), or phenylpyridine (3)) all hydrolyze rapidly, forming monofunctional G adducts on DNA with additional intercalation of the phenyl substituents on the Cpx ring. In comparison, highly potent complex 4 (Cpx = phenyltetramethylcyclopentadienyl and XY = N,N-dimethylphenylazopyridine) does not hydrolyze. All show higher potency toward A2780 human ovarian cancer cells compared to cisplatin, with 1, 3, and 4 also demonstrating higher potency in the National Cancer Institute (NCI) NCI-60 cell-line screen. Use of the NCI COMPARE algorithm (which predicts mechanisms of action (MoAs) for emerging anticancer compounds by correlating NCI-60 patterns of sensitivity) shows that the MoA of these IrIII complexes has no correlation to cisplatin (or oxaliplatin), with 3 and 4 emerging as particularly novel compounds. Those findings by COMPARE were experimentally probed by transmission electron microscopy (TEM) of A2780 cells exposed to 1, showing mitochondrial swelling and activation of apoptosis after 24 h. Significant changes in mitochondrial membrane polarization were detected by flow cytometry, and the potency of the complexes was enhanced ca. 5× by co-administration with a low concentration (5 μM) of the γ-glutamyl cysteine synthetase inhibitor L-buthionine sulfoximine (L-BSO). These studies reveal potential polypharmacology of organometallic IrIII complexes, with MoA and cell selectivity governed by structural changes in the chelating ligands

    3D morphometric analysis of calcified cartilage properties using micro-computed tomography

    Get PDF
    Objective: Our aim is to establish methods for quantifying morphometric properties of calcified cartilage (CC) from micro-computed tomography (mu CT). Furthermore, we evaluated the feasibility of these methods in investigating relationships between osteoarthritis (OA), tidemark surface morphology and open subchondral channels (OSCCs). Method: Samples (n = 15) used in this study were harvested from human lateral tibial plateau (n = 8). Conventional roughness and parameters assessing local 3-dimensional (3D) surface variations were used to quantify the surface morphology of the CC. Subchondral channel properties (percentage, density, size) were also calculated. As a reference, histological sections were evaluated using Histopathological osteoarthritis grading (OARSI) and thickness of CC and subchondral bone (SCB) was quantified. Results: OARSI grade correlated with a decrease in local 3D variations of the tidemark surface (amount of different surface patterns (r(s) = -0.600, P = 0.018), entropy of patterns (EP) (r(s) = -0.648, P = 0.018), homogeneity index (HI) (r(s) = 0.555, P = 0.032)) and tidemark roughness (TMR) (r(s) = -0.579, P = 0.024). Amount of different patterns (ADP) and EP associated with channel area fraction (CAF) (r(p) = 0.876, P <0.0001; r(p) = 0.665, P = 0.007, respectively) and channel density (CD) (r(p) = 0.680, P = 0.011; r(p) = 0.582, P = 0.023, respectively). TMR was associated with CAF (r(p) = 0.926, P <0.0001) and average channel size (r(p) = 0.574, P = 0.025). CC topography differed statistically significantly in early OA vs healthy samples. Conclusion: We introduced a mu-CT image method to quantify 3D CC topography and perforations through CC. CC topography was associated with OARSI grade and OSCC properties; this suggests that the established methods can detect topographical changes in tidemark and CC perforations associated with OA. (c) 2018 The Authors. Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Complete Mitochondrial Genomes Reveal Neolithic Expansion into Europe

    Get PDF
    The Neolithic transition from hunting and gathering to farming and cattle breeding marks one of the most drastic cultural changes in European prehistory. Short stretches of ancient mitochondrial DNA (mtDNA) from skeletons of pre-Neolithic hunter-gatherers as well as early Neolithic farmers support the demic diffusion model where a migration of early farmers from the Near East and a replacement of pre-Neolithic hunter-gatherers are largely responsible for cultural innovation and changes in subsistence strategies during the Neolithic revolution in Europe. In order to test if a signal of population expansion is still present in modern European mitochondrial DNA, we analyzed a comprehensive dataset of 1,151 complete mtDNAs from present-day Europeans. Relying upon ancient DNA data from previous investigations, we identified mtDNA haplogroups that are typical for early farmers and hunter-gatherers, namely H and U respectively. Bayesian skyline coalescence estimates were then used on subsets of complete mtDNAs from modern populations to look for signals of past population expansions. Our analyses revealed a population expansion between 15,000 and 10,000 years before present (YBP) in mtDNAs typical for hunters and gatherers, with a decline between 10,000 and 5,000 YBP. These corresponded to an analogous population increase approximately 9,000 YBP for mtDNAs typical of early farmers. The observed changes over time suggest that the spread of agriculture in Europe involved the expansion of farming populations into Europe followed by the eventual assimilation of resident hunter-gatherers. Our data show that contemporary mtDNA datasets can be used to study ancient population history if only limited ancient genetic data is available

    Counting the Founders: The Matrilineal Genetic Ancestry of the Jewish Diaspora

    Get PDF
    The history of the Jewish Diaspora dates back to the Assyrian and Babylonian conquests in the Levant, followed by complex demographic and migratory trajectories over the ensuing millennia which pose a serious challenge to unraveling population genetic patterns. Here we ask whether phylogenetic analysis, based on highly resolved mitochondrial DNA (mtDNA) phylogenies can discern among maternal ancestries of the Diaspora. Accordingly, 1,142 samples from 14 different non-Ashkenazi Jewish communities were analyzed. A list of complete mtDNA sequences was established for all variants present at high frequency in the communities studied, along with high-resolution genotyping of all samples. Unlike the previously reported pattern observed among Ashkenazi Jews, the numerically major portion of the non-Ashkenazi Jews, currently estimated at 5 million people and comprised of the Moroccan, Iraqi, Iranian and Iberian Exile Jewish communities showed no evidence for a narrow founder effect, which did however characterize the smaller and more remote Belmonte, Indian and the two Caucasus communities. The Indian and Ethiopian Jewish sample sets suggested local female introgression, while mtDNAs in all other communities studied belong to a well-characterized West Eurasian pool of maternal lineages. Absence of sub-Saharan African mtDNA lineages among the North African Jewish communities suggests negligible or low level of admixture with females of the host populations among whom the African haplogroup (Hg) L0-L3 sub-clades variants are common. In contrast, the North African and Iberian Exile Jewish communities show influence of putative Iberian admixture as documented by mtDNA Hg HV0 variants. These findings highlight striking differences in the demographic history of the widespread Jewish Diaspora

    POLG1 p.R722H mutation associated with multiple mtDNA deletions and a neurological phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The c.2447G>A (p.R722H) mutation in the gene <it>POLG1 </it>of the catalytic subunit of human mitochondrial polymerase gamma has been previously found in a few occasions but its pathogenicity has remained uncertain. We set out to ascertain its contribution to neuromuscular disease.</p> <p>Methods</p> <p>Probands from two families with probable mitochondrial disease were examined clinically, muscle and buccal epithelial DNA were analyzed for mtDNA deletions, and the <it>POLG1, POLG2, ANT1 </it>and <it>Twinkle </it>genes were sequenced.</p> <p>Results</p> <p>An adult proband presented with progressive external ophthalmoplegia, sensorineural hearing impairment, diabetes mellitus, dysphagia, a limb myopathy and dementia. Brain MRI showed central and cortical atrophy, and <sup>18</sup>F-deoxyglucose PET revealed reduced glucose uptake. Histochemical analysis of muscle disclosed ragged red fibers and cytochrome c oxidase-negative fibers. Electron microscopy showed subsarcolemmal aggregates of morphologically normal mitochondria. Multiple mtDNA deletions were found in the muscle, and sequencing of the <it>POLG1 </it>gene revealed a homozygous c.2447G>A (p.R722H) mutation. His two siblings were also homozygous with respect to the p.R722H mutation and presented with dementia and sensorineural hearing impairment. In another family the p.R722H mutation was found as compound heterozygosity with the common p.W748S mutation in two siblings with mental retardation, ptosis, epilepsy and psychiatric symptoms. The estimated carrier frequency of the p.R722H mutation was 1:135 in the Finnish population. No mutations in <it>POLG2</it>, <it>ANT1 </it>and <it>Twinkle </it>genes were found. Analysis of the POLG1 sequence by homology modeling supported the notion that the p.R722H mutation is pathogenic.</p> <p>Conclusions</p> <p>The recessive c.2447G>A (p.R722H) mutation in the linker region of the <it>POLG1 </it>gene is pathogenic for multiple mtDNA deletions in muscle and is associated with a late-onset neurological phenotype as a homozygous state. The onset of the disease can be earlier in compound heterozygotes.</p

    Bone toxicity of persistent organic pollutants

    No full text
    Abstract Persistent organic pollutants (POPs), especially dioxin-like chemicals, have been shown to have adverse effects on skeleton and these effects are likely to be mediated via the aryl hydrocarbon receptor (AHR). In spite of the extensive research, the characteristics of developmental effects of POPs are poorly known and the role of AHR in POP bone toxicity and skeletal development in general. In this project changes in bone morphology and strength as well as tissue matrix mechanics are studied by applying state of the art biomedical engineering methods. This allows understanding of the effects of dioxins exposure and AHR activity on the development and maturation of extracellular matrix in musculoskeletal tissues from a completely new perspective, and thereby improving the health risk assessment of POPs. In the present study skeletal properties of rats exposed maternally to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), Northern Contaminant Mixture (NCM) and Aroclor1254 (A1254) were studied for cross-sectional morphometric and biomechanical properties, and data were analysed with benchmark dose modelling. In addition, extracellular matrix properties were analysed using nanoindentation. Similar measurements were performed for adult wild-type and AHR-null mice after TCDD exposure. The same animals were also analysed for microstructural changes using micro-computed tomography and their bone cell activity was estimated from serum markers and gene expression. Analyses show decreased bone length and cross-sectional properties with consequently decreased bone strength. On the other hand, an increased trabecular BMD in response to NCM and A1254 was observed. In addition, bone matrix properties indicated delayed maturation or early senescence after maternal or adult exposure, respectively. The AHR is mainly responsible for bone toxicity of dioxin-like compounds and plays a role in bone development. This is likely due to disturbed bone remodeling as indicated by altered serum markers and gene expression. Overall these results indicate that POPs decrease bone strength, but the interpretation is difficult as there is more trabecular bone within cortical bone with compromised quality and increased porosity.Tiivistelmä Altistumisen pysyville orgaanisille ympäristökemikaaleille on todettu heikentävän luustoa. Dioksiinien ja dioksiininkaltaisten yhdisteiden vaikutusten on havaittu välittyvän aryylihiilivetyreseptorin (AHR) välityksellä. Huolimatta pitkään kestäneestä tutkimuksesta POP-yhdisteiden sikiönkehityksen aikaisen altistuksen vaikutukset ja etenkin niiden mekanismit ovat edelleen huonosti tunnettuja, samoin kuin AHR:n osuus POP-yhdisteiden luutoksisuudessa ja luuston kehityksessä ylipäätään. Tässä työssä tutkittiin luuston rakenteellisia ja mekaanisia ominaisuuksia niin perinteisillä kuin uusimmilla biolääketieteen tekniikan menetelmillä. Tutkimuksen tavoitteena on saada uutta tietoa POP-altistuksen ja AHR-aktiivisuuden vaikutuksista luuston kehitykseen ja luukudoksen ikääntymisprosesseihin, mikä edesauttaa kyseisten yhdisteiden riskinarviointia. Tutkimuksissa altistettiin kantavia rottaemoja 2,3,7,8-tetraklooridibenzo-p-dioksiinille (TCDD), pohjoiselle saasteseokselle ja kaupalliselle Arokloori 1254 PCB-seokselle. Sikiönkehityksen aikana altistuneiden jälkeläisten luuston poikkileikkausen morfologia ja biomekaaniset ominaisuudet mitattiin ja tulokset mallinnettiin vertailuannoksen määrittämiseksi. Lisäksi TCDD-altistettujen rottien luustomatriisin ominaisuuksia selvitettiin nanoindentaatiomenetelmällä. Samaa menetelmää käytettiin myös aikuisiässä TCDD:lle altistettujen villityypin hiirten ja AHR-poistogeenisiten hiirten tutkimiseen. Näiden hiirten luuston hienorakennetta mitattiin myös korkean resoluution mikro-tietokonetomografialla ja niiden luusolujen aktiivisuutta tutkittiin seerumin biomarkkerien ja luun muodostumiseen osallistuvien geenien ekspressiotasojen avulla. Sikiönkehityksen aikainen altistuminen pohjoiselle saasteseokselle ja Arokloori 1254:lle hidasti luiden pituuskasvua. Lisäksi luiden poikkileikkauspinta-alat olivat pienentyneet ja mekaaniset ominaisuudet heikentyneet. Toisaalta hohkaluun määrä oli lisääntynyt altistumisen seurauksena. Myös sikiönkehityksen aikainen altistuminen TCDD:lle hidasti luukudoksen kypsymistä ja johti aikuisiällä luukudoksen ennenaikaiseen vanhenemiseen. AHR:llä oli päärooli ainakin aikuisiän vaikutusten ilmenemiselle ja reseptorilla vaikutti olevan rooli luuston kehityksessä ylipäätään. Seerumin biomarkkereiden ja geeniekspression muutosten perusteella nämä vaikutukset johtuvat todennäköisesti luuston uusiutumisen häiriöistä. Yhteenvetona voidaan todeta, että POP-yhdisteet heikentävät luustoa, mutta tämän ilmiön diagnosoiminen on hankalaa, koska huonolaatuisen kuoriluun sisällä hohkaluun määrä on lisääntynyt

    Experimental mechanical strain measurement of tissues

    No full text
    Abstract Strain, an important biomechanical factor, occurs at different scales from molecules and cells to tissues and organs in physiological conditions. Under mechanical strain, the strength of tissues and their micro- and nanocomponents, the structure, proliferation, differentiation and apoptosis of cells and even the cytokines expressed by cells probably shift. Thus, the measurement of mechanical strain (i.e., relative displacement or deformation) is critical to understand functional changes in tissues, and to elucidate basic relationships between mechanical loading and tissue response. In the last decades, a great number of methods have been developed and applied to measure the deformations and mechanical strains in tissues comprising bone, tendon, ligament, muscle and brain as well as blood vessels. In this article, we have reviewed the mechanical strain measurement from six aspects: electro-based, light-based, ultrasound-based, magnetic resonance-based and computed tomography-based techniques, and the texture correlation-based image processing method. The review may help solving the problems of experimental and mechanical strain measurement of tissues under different measurement environments

    Preparation of filter by alkali activation of blast furnace slag and its application for dye removal

    No full text
    Abstract This study demonstrates a high-value valorization of blast furnace slag in foamed alkali-activated filters for adsorption applications, using methylene blue as a model compound. The filters were prepared by combining alkali activation of blast furnace slag with direct foaming, followed by curing at 60 °C for 4 h. Five different surfactants were compared for the stabilization of foams. Based on an initial screening, the Triton X-405 surfactant was selected for further studies. The dosages of selected surfactant and H₂O₂ were optimized to obtain compressive strength of 2.59 MPa and specific surface area of 83.3 m²/g for powdered material and 78.31 m²/g for foam pieces. Porosity was determined as 64%, 65%, or 50% by using gas pycnometry, Archimedes method, or X-ray microtomography, respectively. The optimized filter mix design was applied for methylene blue removal in continuous column experiments at two influent concentrations (5 and 10 ppm) by using constant empty-bed contact time of ~9 min (flowrate of ~1 L/h). After 6 h, for both influent concentrations, the dye removal was still 74%, with the initial removal of ~100%. The saturated filter could be regenerated by a thermal treatment resulting improved adsorption performance. When the material was employed as powder, the maximum adsorption capacity was 60.35 mg/g according to the Langmuir isotherm (R² = 0.99) and adsorption kinetics followed the pseudo-second order model. The results demonstrate preliminarily that porous filters prepared in this study have potential to be used in industrial wastewater treatment
    corecore