1,878 research outputs found
Deployment of a pair of 3M telescopes in Utah
Journal ArticleTwo 3m telescopes are being installed in Grantsville Utah. They are intended for the testing of various approaches to the implementation of intensity interferometry using Cherenkov Telescopes in large arrays as receivers as well as for the testing of novel technology cameras and electronics for ground based gamma-ray astronomy
The short-term effects of management changes on watertable position and nutrients in shallow groundwater in a harvested peatland forest
This work was funded by the Department of Agriculture, Fisheries and Food and the Environmental Protection Agency under the STRIVE program 2007 – 2013.peer-reviewedManagement changes such as drainage, fertilisation, afforestation and harvesting (clearfelling) of forested peatlands influence watertable (WT) position and groundwater concentrations of nutrients. This study investigated the impact of clearfelling of a peatland forest on WT and nutrient concentrations. Three areas were examined: (1) a regenerated riparian peatland buffer (RB) clearfelled four years prior to the present study (2) a recently clearfelled coniferous forest (CF) and (3) a standing, mature coniferous forest (SF), on which no harvesting took place. The WT remained consistently below 0.3 m during the pre-clearfelling period. Results showed there was an almost immediate rise in the WT after clearfelling and a rise to 0.15 m below ground level (bgl) within 10 months of clearfelling. Clearfelling of the forest increased dissolved reactive phosphorus concentrations (from an average of 28–230 μg L−1) in the shallow groundwater, likely caused by leaching from degrading brash mats.Environmental Protection AgencyDepartment of Agriculture, Food and the Marin
Polyethyleneimine-mediated transfection of cultured postmitotic neurons from rat sympathetic ganglia and adult human retina
BACKGROUND: Chemical methods of transfection that have proven successful with cell lines often do not work with primary cultures of neurons. Recent data, however, suggest that linear polymers of the cation polyethyleneimine (PEI) can facilitate the uptake of nucleic acids by neurons. Consequently, we examined the ability of a commercial PEI preparation to allow the introduction of foreign genes into postmitotic mammalian neurons. Sympathetic neurons were obtained from perinatal rat pups and maintained for 5 days in vitro in the absence of nonneuronal cells. Cultures were then transfected with varying amounts of a plasmid encoding either E. coli β-galactosidase or enhanced green fluorescence protein (EGFP) using PEI. RESULTS: Optimal transfection efficiency was observed with 1 μg/ml of plasmid DNA and 5 μg/ml PEI. Expression of β-galactosidase was both rapid and stable, beginning within 6 hours and lasting for at least 21 days. A maximum yield was obtained within 72 hours with ∼ 9% of the neurons expressing β-galactosidase, as assessed by both histochemistry and antibody staining. Cotransfection of two plasmids encoding reporter genes was achieved. Postmitotic neurons from adult human retinal cultures also demonstrated an ability to take up and express foreign DNA using PEI as a vector. CONCLUSIONS: These data suggest that PEI is a useful agent for the stable expression of plasmid-encoded genes in neuronal cultures
Inhibition of the epidermal growth factor receptor tyrosine kinase activity by leflunomide
AbstractThe active metabolite of leflunomide, A77 1726 inhibits the proliferation of a variety of mammalian cell lines in culture. Epidermal growth factor (EGF)-dependent proliferation is inhibited by A77 1726 at an effective dose of 30–40 μM. A77 1726 appears to directly inhibit the EGF receptor tyrosine-specific kinase activity both in intact cells and purified EGF receptors at the same effective dose. These data suggest that leflunomide inhibits cellular proliferation by the inhibition of tyrosine-specific kinase activities
Analysing the impact of iron dysmetabolism on regional metal ion distribution in the brain
An Iron Overload and an H-Ferritin Deficient Mouse Model were used to examine the impact of disrupted iron metabolism on the brain. Brain sections were imaged and compared using Synchrotron μXRF spectroscopy. Quantitative measurement of the relative metal ion concentrations for iron, copper and zinc were made across selected regions of interest in the brain. It was generally found that metal ion concentrations of iron and zinc decreased in specific regions in the Iron Overload condition compared with the control, with copper increasing in only one region. Few regions differed in metal ion concentration between the H-Ferritin Deficient Model and the control. The three conditions exhibited similar / identical results for metal ion concentrations in many brain regions, indicating the validity of the method used for comparison between samples. It is clear that there exists a complex relationship between these trace metal
Recommended from our members
River channel width controls blocking by slow-moving landslides in California's Franciscan melange
This is the final version. Available from European Geosciences Union via the DOI in this record. To explore the sensitivity of rivers to blocking from landslide debris, we exploit two similar geomorphic settings in California's Franciscan mélange where slow-moving landslides, often referred to as earthflows, impinge on river channels with drainage areas that differ by a factor of 30. Analysis of valley widths and river long profiles over ∼19 km of Alameda Creek (185 km2 drainage area) and Arroyo Hondo (200 km2 drainage area) in central California shows a very consistent picture in which earthflows that intersect these channels force tens of meters of gravel aggradation for kilometers upstream, leading to apparently long-lived sediment storage and channel burial at these sites. In contrast, over a ∼30 km section of the Eel River (5547 km2 drainage area), there are no knickpoints or aggradation upstream of locations where earthflows impinge on its channel. Hydraulic and hydrologic data from United States Geological Survey (USGS) gages on Arroyo Hondo and the Eel River, combined with measured size distributions of boulders input by landslides for both locations, suggest that landslide derived boulders are not mobile at either site during the largest floods (>2-year recurrence) with field-measured flow depths. We therefore argue that boulder transport capacity is an unlikely explanation for the observed difference in sensitivity to landslide inputs. At the same time, we find that earthflow fluxes per unit channel width are nearly identical for Oak Ridge earthflow on Arroyo Hondo, where evidence for blocking is clear, and for the Boulder Creek earthflow on the Eel River, where evidence for blocking is absent. These observations suggest that boulder supply is also an unlikely explanation for the observed morphological differences along the two rivers. Instead, we argue that the dramatically different sensitivity of the two locations to landslide blocking is related to differences in channel width relative to typical seasonal displacements of earthflows. A synthesis of seasonal earthflow displacements in the Franciscan mélange shows that the channel width of the Eel River is ∼5 times larger than the largest annual seasonal displacement. In contrast, during wet winters, earthflows are capable of crossing the entire channel width of Arroyo Hondo and Alameda Creek. In support of this interpretation, satellite imagery shows that immobile earthflow-derived boulders are generally confined to the edges of the channel on the Eel River. By contrast, immobile earthflow-derived boulders jam the entire channel on Arroyo Hondo. Our results imply that lower drainage area reaches of earthflow-dominated catchments may be particularly prone to blocking. By inhibiting the upstream propagation of base-level signals, valley-blocking earthflows may therefore promote the formation of so-called “relict topography”.National Science Foundatio
Pressure-induced bcc-rhombohedral phase transition in vanadium metal
Vanadium is reported to undergo a pressure-induced bcc-rhombohedral phase transition at 30–70 GPa, with a transition pressure that is sensitive to the hydrostaticity of the sample environment. However, the experimental evidence for the structure of the high-pressure phase being rhombohedral is surprisingly weak. We have restudied vanadium under pressure to 154 GPa using both polycrystalline and single-crystal samples, and a variety of different pressure transmitting media (PTM). We find that only when using single-crystal samples does one observe a rhombohedral high-pressure phase; the high-pressure diffraction profiles from the polycrystalline samples do not fit a rhombohedral lattice, irrespective of the PTM used. The single-crystal samples reveal two rhombohedral phases, with a continuous transition between them, and distortions from cubic symmetry are much smaller than previously calculated
- …