3,583 research outputs found

    Optically Probing Spin and Charge Interactions in an Tunable Artificial Molecule

    Get PDF
    We optically probe and electrically control a single artificial molecule containing a well defined number of electrons. Charge and spin dependent inter-dot quantum couplings are probed optically by adding a single electron-hole pair and detecting the emission from negatively charged exciton states. Coulomb and Pauli blockade effects are directly observed and hybridization and electrostatic charging energies are independently measured. The inter-dot quantum coupling is confirmed to be mediated predominantly by electron tunneling. Our results are in excellent accord with calculations that provide a complete picture of negative excitons and few electron states in quantum dot molecules.Comment: shortened version: 6 pages, 3 figures, 1 table, to appear in Phys. Rev. Let

    Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule

    Get PDF
    We probe acoustic phonon mediated relaxation between tunnel coupled exciton states in an individual quantum dot molecule in which the inter-dot quantum coupling and energy separation between exciton states is continuously tuned using static electric field. Time resolved and temperature dependent optical spectroscopy are used to probe inter-level relaxation around the point of maximum coupling. The radiative lifetimes of the coupled excitonic states can be tuned from ~2 ns to ~10 ns as the spatially direct and indirect character of the wavefunction is varied by detuning from resonance. Acoustic phonon mediated inter-level relaxation is shown to proceed over timescales comparable to the direct exciton radiative lifetime, indicative of a relaxation bottleneck for level spacings in the range $\Delta E\$ ~3-6 meV.Comment: 6 pages, 4 figures, submitted for publicatio

    Coplanar stripline antenna design for optically detected magnetic resonance on semiconductor quantum dots

    Full text link
    We report on the development and testing of a coplanar stripline antenna that is designed for integration in a magneto-photoluminescence experiment to allow coherent control of individual electron spins confined in single self-assembled semiconductor quantum dots. We discuss the design criteria for such a structure which is multi-functional in the sense that it serves not only as microwave delivery but also as electrical top gate and shadow mask for the single quantum dot spectroscopy. We present test measurements on hydrogenated amorphous silicon, demonstrating electrically detected magnetic resonance using the in-plane component of the oscillating magnetic field created by the coplanar stripline antenna necessary due to the particular geometry of the quantum dot spectroscopy. From reference measurements using a commercial electron spin resonance setup in combination with finite element calculations simulating the field distribution in the structure, we obtain an average magnetic field of ~0.2mT at the position where the quantum dots would be integrated into the device. The corresponding pi-pulse time of ~0.3us fully meets the requirements set by the high sensitivity optical spin read-out scheme developed for the quantum dot

    Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule

    Get PDF
    We report the direct observation of quantum coupling in individual quantum dot molecules and its manipulation using static electric fields. A pronounced anti-crossing of different excitonic transitions is observed as the electric field is tuned. Comparison of our experimental results with theory shows that the observed anti-crossing occurs between excitons with predominant spatially \emph{direct} and \emph{indirect} character. The electron component of the exciton wavefunction is shown to have molecular character at the anti-crossing and the quantum coupling strength is deduced optically. In addition, we determine the dependence of the coupling strength on the inter-dot separation and identify a field driven transition of the nature of the molecular ground state.Comment: 11 pages, 4 figures submitted to Physical Review Letter

    Electrical control of the exciton-biexciton splitting in a single self-assembled InGaAs quantum dots

    Get PDF
    We report on single InGaAs quantum dots embedded in a lateral electric field device. By applying a voltage we tune the neutral exciton transition into resonance with the biexciton using the quantum confined Stark effect. The results are compared to theoretical calculations of the relative energies of exciton and biexciton. Cascaded decay from the manifold of single exciton-biexciton states has been predicted to be a new concept to generate entangled photon pairs on demand without the need to suppress the fine structures splitting of the neutral exciton

    Solutions of the sDiff(2)Toda equation with SU(2) Symmetry

    Full text link
    We present the general solution to the Plebanski equation for an H-space that admits Killing vectors for an entire SU(2) of symmetries, which is therefore also the general solution of the sDiff(2)Toda equation that allows these symmetries. Desiring these solutions as a bridge toward the future for yet more general solutions of the sDiff(2)Toda equation, we generalize the earlier work of Olivier, on the Atiyah-Hitchin metric, and re-formulate work of Babich and Korotkin, and Tod, on the Bianchi IX approach to a metric with an SU(2) of symmetries. We also give careful delineations of the conformal transformations required to ensure that a metric of Bianchi IX type has zero Ricci tensor, so that it is a self-dual, vacuum solution of the complex-valued version of Einstein's equations, as appropriate for the original Plebanski equation.Comment: 27 page

    Molecular Mechanics Simulations and Improved Tight-binding Hamiltonians for Artificial Light Harvesting Systems: Predicting Geometric Distributions, Disorder, and Spectroscopy of Chromophores in a Protein Environment

    Get PDF
    We present molecular mechanics {and spectroscopic} calculations on prototype artificial light harvesting systems consisting of chromophores attached to a tobacco mosaic virus (TMV) protein scaffold. These systems have been synthesized and characterized spectroscopically, but information about the microscopic configurations and geometry of these TMV-templated chromophore assemblies is largely unknown. We use a Monte Carlo conformational search algorithm to determine the preferred positions and orientations of two chromophores, Coumarin 343 together with its linker, and Oregon Green 488, when these are attached at two different sites (104 and 123) on the TMV protein. The resulting geometric information shows that the extent of disorder and aggregation properties, and therefore the optical properties of the TMV-templated chromophore assembly, are highly dependent on the choice of chromophores and protein site to which they are bound. We used the results of the conformational search as geometric parameters together with an improved tight-binding Hamiltonian to simulate the linear absorption spectra and compare with experimental spectral measurements. The ideal dipole approximation to the Hamiltonian is not valid since the distance between chromophores can be very small. We found that using the geometries from the conformational search is necessary to reproduce the features of the experimental spectral peaks

    Criminal Procedure and Criminal Law: Virginia Supreme Court Decisions During the 70\u27s

    Get PDF
    The purpose of this note is to examine the decisions of the Virginia Supreme Court during the period between 1970-1980 in the area of criminal procedure and substantive criminal law. Legislative changes will not be dealt with in depth except as they have affected these decisions. Because of space constraints, a complete review of all areas is impossible; therefore, review has been limited to those issues most likely to be of interest to the practicing attorney. The discussion will also attempt to establish the position of the Virginia Supreme Court on these matters in relation to the United States Supreme Court and the majority of state courts

    New first integral for twisting type-N vacuum gravitational fields with two non-commuting Killing vectors

    Get PDF
    A new first integral for the equations corresponding to twisting type-N vacuum gravitational fields with two non-commuting Killing vectors is introduced. A new reduction of the problem to a complex second-order ordinary differential equation is given. Alternatively, the mentioned first integral can be used in order to provide a first integral of the second-order complex equation introduced in a previous treatment of the problem.Comment: 7 pages, LaTeX, uses ioplppt.sty and iopl12.sty; to be published in Class. Quantum Gra

    A Gravitational Redshift Determination of the Mean Mass of White Dwarfs. DA Stars

    Get PDF
    We measure apparent velocities (v_app) of the Halpha and Hbeta Balmer line cores for 449 non-binary thin disk normal DA white dwarfs (WDs) using optical spectra taken for the ESO SN Ia Progenitor surveY (SPY; Napiwotzki et al. 2001). Assuming these WDs are nearby and co-moving, we correct our velocities to the Local Standard of Rest so that the remaining stellar motions are random. By averaging over the sample, we are left with the mean gravitational redshift, : we find = = 32.57 +/- 1.17 km/s. Using the mass-radius relation from evolutionary models, this translates to a mean mass of 0.647 +0.013 -0.014 Msun. We interpret this as the mean mass for all DAs. Our results are in agreement with previous gravitational redshift studies but are significantly higher than all previous spectroscopic determinations except the recent findings of Tremblay & Bergeron (2009). Since the gravitational redshift method is independent of surface gravity from atmosphere models, we investigate the mean mass of DAs with spectroscopic Teff both above and below 12000 K; fits to line profiles give a rapid increase in the mean mass with decreasing Teff. Our results are consistent with no significant change in mean mass: ^hot = 0.640 +/- 0.014 Msun and ^cool = 0.686 +0.035 -0.039 Msun.Comment: Accepted for publication in ApJ, 14 pages, 12 figure
    • …
    corecore