3,583 research outputs found
Optically Probing Spin and Charge Interactions in an Tunable Artificial Molecule
We optically probe and electrically control a single artificial molecule
containing a well defined number of electrons. Charge and spin dependent
inter-dot quantum couplings are probed optically by adding a single
electron-hole pair and detecting the emission from negatively charged exciton
states. Coulomb and Pauli blockade effects are directly observed and
hybridization and electrostatic charging energies are independently measured.
The inter-dot quantum coupling is confirmed to be mediated predominantly by
electron tunneling. Our results are in excellent accord with calculations that
provide a complete picture of negative excitons and few electron states in
quantum dot molecules.Comment: shortened version: 6 pages, 3 figures, 1 table, to appear in Phys.
Rev. Let
Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule
We probe acoustic phonon mediated relaxation between tunnel coupled exciton
states in an individual quantum dot molecule in which the inter-dot quantum
coupling and energy separation between exciton states is continuously tuned
using static electric field. Time resolved and temperature dependent optical
spectroscopy are used to probe inter-level relaxation around the point of
maximum coupling. The radiative lifetimes of the coupled excitonic states can
be tuned from ~2 ns to ~10 ns as the spatially direct and indirect character of
the wavefunction is varied by detuning from resonance. Acoustic phonon mediated
inter-level relaxation is shown to proceed over timescales comparable to the
direct exciton radiative lifetime, indicative of a relaxation bottleneck for
level spacings in the range $\Delta E\$ ~3-6 meV.Comment: 6 pages, 4 figures, submitted for publicatio
Coplanar stripline antenna design for optically detected magnetic resonance on semiconductor quantum dots
We report on the development and testing of a coplanar stripline antenna that
is designed for integration in a magneto-photoluminescence experiment to allow
coherent control of individual electron spins confined in single self-assembled
semiconductor quantum dots. We discuss the design criteria for such a structure
which is multi-functional in the sense that it serves not only as microwave
delivery but also as electrical top gate and shadow mask for the single quantum
dot spectroscopy. We present test measurements on hydrogenated amorphous
silicon, demonstrating electrically detected magnetic resonance using the
in-plane component of the oscillating magnetic field created by the coplanar
stripline antenna necessary due to the particular geometry of the quantum dot
spectroscopy. From reference measurements using a commercial electron spin
resonance setup in combination with finite element calculations simulating the
field distribution in the structure, we obtain an average magnetic field of
~0.2mT at the position where the quantum dots would be integrated into the
device. The corresponding pi-pulse time of ~0.3us fully meets the requirements
set by the high sensitivity optical spin read-out scheme developed for the
quantum dot
Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule
We report the direct observation of quantum coupling in individual quantum
dot molecules and its manipulation using static electric fields. A pronounced
anti-crossing of different excitonic transitions is observed as the electric
field is tuned. Comparison of our experimental results with theory shows that
the observed anti-crossing occurs between excitons with predominant spatially
\emph{direct} and \emph{indirect} character. The electron component of the
exciton wavefunction is shown to have molecular character at the anti-crossing
and the quantum coupling strength is deduced optically. In addition, we
determine the dependence of the coupling strength on the inter-dot separation
and identify a field driven transition of the nature of the molecular ground
state.Comment: 11 pages, 4 figures submitted to Physical Review Letter
Electrical control of the exciton-biexciton splitting in a single self-assembled InGaAs quantum dots
We report on single InGaAs quantum dots embedded in a lateral electric field
device. By applying a voltage we tune the neutral exciton transition into
resonance with the biexciton using the quantum confined Stark effect. The
results are compared to theoretical calculations of the relative energies of
exciton and biexciton. Cascaded decay from the manifold of single
exciton-biexciton states has been predicted to be a new concept to generate
entangled photon pairs on demand without the need to suppress the fine
structures splitting of the neutral exciton
Solutions of the sDiff(2)Toda equation with SU(2) Symmetry
We present the general solution to the Plebanski equation for an H-space that
admits Killing vectors for an entire SU(2) of symmetries, which is therefore
also the general solution of the sDiff(2)Toda equation that allows these
symmetries. Desiring these solutions as a bridge toward the future for yet more
general solutions of the sDiff(2)Toda equation, we generalize the earlier work
of Olivier, on the Atiyah-Hitchin metric, and re-formulate work of Babich and
Korotkin, and Tod, on the Bianchi IX approach to a metric with an SU(2) of
symmetries. We also give careful delineations of the conformal transformations
required to ensure that a metric of Bianchi IX type has zero Ricci tensor, so
that it is a self-dual, vacuum solution of the complex-valued version of
Einstein's equations, as appropriate for the original Plebanski equation.Comment: 27 page
Molecular Mechanics Simulations and Improved Tight-binding Hamiltonians for Artificial Light Harvesting Systems: Predicting Geometric Distributions, Disorder, and Spectroscopy of Chromophores in a Protein Environment
We present molecular mechanics {and spectroscopic} calculations on prototype
artificial light harvesting systems consisting of chromophores attached to a
tobacco mosaic virus (TMV) protein scaffold. These systems have been
synthesized and characterized spectroscopically, but information about the
microscopic configurations and geometry of these TMV-templated chromophore
assemblies is largely unknown. We use a Monte Carlo conformational search
algorithm to determine the preferred positions and orientations of two
chromophores, Coumarin 343 together with its linker, and Oregon Green 488, when
these are attached at two different sites (104 and 123) on the TMV protein. The
resulting geometric information shows that the extent of disorder and
aggregation properties, and therefore the optical properties of the
TMV-templated chromophore assembly, are highly dependent on the choice of
chromophores and protein site to which they are bound. We used the results of
the conformational search as geometric parameters together with an improved
tight-binding Hamiltonian to simulate the linear absorption spectra and compare
with experimental spectral measurements. The ideal dipole approximation to the
Hamiltonian is not valid since the distance between chromophores can be very
small. We found that using the geometries from the conformational search is
necessary to reproduce the features of the experimental spectral peaks
Criminal Procedure and Criminal Law: Virginia Supreme Court Decisions During the 70\u27s
The purpose of this note is to examine the decisions of the Virginia Supreme Court during the period between 1970-1980 in the area of criminal procedure and substantive criminal law. Legislative changes will not be dealt with in depth except as they have affected these decisions. Because of space constraints, a complete review of all areas is impossible; therefore, review has been limited to those issues most likely to be of interest to the practicing attorney. The discussion will also attempt to establish the position of the Virginia Supreme Court on these matters in relation to the United States Supreme Court and the majority of state courts
New first integral for twisting type-N vacuum gravitational fields with two non-commuting Killing vectors
A new first integral for the equations corresponding to twisting type-N
vacuum gravitational fields with two non-commuting Killing vectors is
introduced. A new reduction of the problem to a complex second-order ordinary
differential equation is given. Alternatively, the mentioned first integral can
be used in order to provide a first integral of the second-order complex
equation introduced in a previous treatment of the problem.Comment: 7 pages, LaTeX, uses ioplppt.sty and iopl12.sty; to be published in
Class. Quantum Gra
A Gravitational Redshift Determination of the Mean Mass of White Dwarfs. DA Stars
We measure apparent velocities (v_app) of the Halpha and Hbeta Balmer line
cores for 449 non-binary thin disk normal DA white dwarfs (WDs) using optical
spectra taken for the ESO SN Ia Progenitor surveY (SPY; Napiwotzki et al.
2001). Assuming these WDs are nearby and co-moving, we correct our velocities
to the Local Standard of Rest so that the remaining stellar motions are random.
By averaging over the sample, we are left with the mean gravitational redshift,
: we find = = 32.57 +/- 1.17 km/s. Using the mass-radius
relation from evolutionary models, this translates to a mean mass of 0.647
+0.013 -0.014 Msun. We interpret this as the mean mass for all DAs. Our results
are in agreement with previous gravitational redshift studies but are
significantly higher than all previous spectroscopic determinations except the
recent findings of Tremblay & Bergeron (2009). Since the gravitational redshift
method is independent of surface gravity from atmosphere models, we investigate
the mean mass of DAs with spectroscopic Teff both above and below 12000 K; fits
to line profiles give a rapid increase in the mean mass with decreasing Teff.
Our results are consistent with no significant change in mean mass: ^hot =
0.640 +/- 0.014 Msun and ^cool = 0.686 +0.035 -0.039 Msun.Comment: Accepted for publication in ApJ, 14 pages, 12 figure
- …