882 research outputs found
Resonance fluorescence of GaAs quantum dots with near-unity photon indistinguishability
Photonic quantum technologies call for scalable quantum light sources that
can be integrated, while providing the end user with single and entangled
photons on-demand. One promising candidate are strain free GaAs/AlGaAs quantum
dots obtained by droplet etching. Such quantum dots exhibit ultra low
multi-photon probability and an unprecedented degree of photon pair
entanglement. However, different to commonly studied InGaAs/GaAs quantum dots
obtained by the Stranski-Krastanow mode, photons with a near-unity
indistinguishability from these quantum emitters have proven to be elusive so
far. Here, we show on-demand generation of near-unity indistinguishable photons
from these quantum emitters by exploring pulsed resonance fluorescence. Given
the short intrinsic lifetime of excitons confined in the GaAs quantum dots, we
show single photon indistinguishability with a raw visibility of
, without the need for Purcell enhancement. Our
results represent a milestone in the advance of GaAs quantum dots by
demonstrating the final missing property standing in the way of using these
emitters as a key component in quantum communication applications, e.g. as an
entangled source for quantum repeater architectures
Measurement of the antineutrino neutral-current elastic differential cross section
arXiv:1309.7257v1 [hep-ex
Acromial stress fracture in a young wheelchair user with Charcot-Marie-Tooth disease: a case report
Acromial stress fractures are rare and have not been highlighted as a potential complication of wheelchair use. We report the case of a 22-year old female wheelchair bound patient with Charcot-Marie-Tooth disease who presented with a four-year history of shoulder pain which impaired mobility and quality of life. Plain radiographs showed a cortical irregularity of the acromion but no double-density sign. After CT scans a non-united acromial stress fracture was diagnosed. She had no other shoulder pathology. The new technique of using a superiorly closing wedge osteotomy with cancellous lag screw fixation was successful in correcting the mobile non-united acromial fragment and resolving her pain
The crux of using the cascaded emission of a 3-level quantum ladder system to generate indistinguishable photons
We investigate the degree of indistinguishability of cascaded photons emitted
from a 3-level quantum ladder system; in our case the biexciton-exciton cascade
of semiconductor quantum dots. For the 3-level quantum ladder system we
theoretically demonstrate that the indistinguishability is inherently limited
for both emitted photons and determined by the ratio of the lifetimes of the
excited and intermediate states. We experimentally confirm this finding by
comparing the quantum interference visibility of non-cascaded emission and
cascaded emission from the same semiconductor quantum dot. Quantum optical
simulations produce very good agreement with the measurements and allow to
explore a large parameter space. Based on our model, we propose photonic
structures to optimize the lifetime ratio and overcome the limited
indistinguishability of cascaded photon emission from a 3-level quantum ladder
system.Comment: We moved the paragraph about asymmetric Purcell enhancement from page
4 bottom to page 5 first colum
Control of interjoint coordination during the swing phase of normal gait at different speeds
BACKGROUND: It has been suggested that the control of unconstrained movements is simplified via the imposition of a kinetic constraint that produces dynamic torques at each moving joint such that they are a linear function of a single motor command. The linear relationship between dynamic torques at each joint has been demonstrated for multijoint upper limb movements. The purpose of the current study was to test the applicability of such a control scheme to the unconstrained portion of the gait cycle – the swing phase. METHODS: Twenty-eight neurologically normal individuals walked along a track at three different speeds. Angular displacements and dynamic torques produced at each of the three lower limb joints (hip, knee and ankle) were calculated from segmental position data recorded during each trial. We employed principal component (PC) analysis to determine (1) the similarity of kinematic and kinetic time series at the ankle, knee and hip during the swing phase of gait, and (2) the effect of walking speed on the range of joint displacement and torque. RESULTS: The angular displacements of the three joints were accounted for by two PCs during the swing phase (Variance accounted for – PC1: 75.1 ± 1.4%, PC2: 23.2 ± 1.3%), whereas the dynamic joint torques were described by a single PC (Variance accounted for – PC1: 93.8 ± 0.9%). Increases in walking speed were associated with increases in the range of motion and magnitude of torque at each joint although the ratio describing the relative magnitude of torque at each joint remained constant. CONCLUSION: Our results support the idea that the control of leg swing during gait is simplified in two ways: (1) the pattern of dynamic torque at each lower limb joint is produced by appropriately scaling a single motor command and (2) the magnitude of dynamic torque at all three joints can be specified with knowledge of the magnitude of torque at a single joint. Walking speed could therefore be altered by modifying a single value related to the magnitude of torque at one joint
Semliki Forest virus induced, immune mediated demyelination: the effect of irradiation
International audienceThe Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey (DES). The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 mag fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = -38.14° ± 0.08° (near side in the north) and a position angle for the line of nodes of θ0 = 129.51° ± 0.17°. We find that stars younger than ∼4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R>4 Gyr = 1.41 ± 0.01 kpc, while the younger population has R = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of Rt = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is {∼eq } 24^{+9}_{-6} times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fitting LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. Our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component
Forward Global Photometric Calibration of the Dark Energy Survey
Many scientific goals for the Dark Energy Survey (DES) require calibration of
optical/NIR broadband photometry that is stable in time and uniform
over the celestial sky to one percent or better. It is also necessary to limit
to similar accuracy systematic uncertainty in the calibrated broadband
magnitudes due to uncertainty in the spectrum of the source. Here we present a
"Forward Global Calibration Method (FGCM)" for photometric calibration of the
DES, and we present results of its application to the first three years of the
survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at
the observatory with data from the broad-band survey imaging itself and models
of the instrument and atmosphere to estimate the spatial- and time-dependence
of the passbands of individual DES survey exposures. "Standard" passbands are
chosen that are typical of the passbands encountered during the survey. The
passband of any individual observation is combined with an estimate of the
source spectral shape to yield a magnitude in the standard
system. This "chromatic correction" to the standard system is necessary to
achieve sub-percent calibrations. The FGCM achieves reproducible and stable
photometric calibration of standard magnitudes of stellar
sources over the multi-year Y3A1 data sample with residual random calibration
errors of per exposure. The accuracy of the
calibration is uniform across the DES footprint to
within . The systematic uncertainties of magnitudes in
the standard system due to the spectra of sources are less than
for main sequence stars with .Comment: 25 pages, submitted to A
The Origin of Antibunching in Resonance Fluorescence
Epitaxial quantum dots have emerged as one of the best single-photon sources,
not only for applications in photonic quantum technologies but also for testing
fundamental properties of quantum optics. One intriguing observation in this
area is the scattering of photons with subnatural linewidth from a two-level
system under resonant continuous wave excitation. In particular, an open
question is whether these subnatural linewidth photons exhibit simultaneously
antibunching as an evidence of single-photon emission. Here, we demonstrate
that this simultaneous observation of subnatural linewidth and antibunching is
not possible with simple resonant excitation. First, we independently confirm
single-photon character and subnatural linewidth by demonstrating antibunching
in a Hanbury Brown and Twiss type setup and using high-resolution spectroscopy,
respectively. However, when filtering the coherently scattered photons with
filter bandwidths on the order of the homogeneous linewidth of the excited
state of the two-level system, the antibunching dip vanishes in the correlation
measurement. Our experimental work is consistent with recent theoretical
findings, that explain antibunching from photon-interferences between the
coherent scattering and a weak incoherent signal in a skewed squeezed state.Comment: 8 pages, 4 figure
Origin of antibunching in resonance fluorescence
Resonance fluorescence has played a major role in quantum optics with predictions and later experimental confirmation of nonclassical features of its emitted light such as antibunching or squeezing. In the Rayleigh regime where most of the light originates from the scattering of photons with subnatural linewidth, antibunching would appear to coexist with sharp spectral lines. Here, we demonstrate that this simultaneous observation of subnatural linewidth and antibunching is not possible with simple resonant excitation. Using an epitaxial quantum dot for the two-level system, we independently confirm the single-photon character and subnatural linewidth by demonstrating antibunching in a Hanbury Brown and Twiss type setup and using high-resolution spectroscopy, respectively. However, when filtering the coherently scattered photons with filter bandwidths on the order of the homogeneous linewidth of the excited state of the two-level system, the antibunching dip vanishes in the correlation measurement. Our observation is explained by antibunching originating from photon-interferences between the coherent scattering and a weak incoherent signal in a skewed squeezed state. This prefigures schemes to achieve simultaneous subnatural linewidth and antibunched emissio
Salvage Cryotherapy for Radiation-Recurrent Prostate Cancer: Outcomes and Complications
Potentially curative salvage options for radio-recurrent prostate cancer include prostatectomy, brachytherapy, high-intensity focused ultrasound, and cryotherapy. Salvage cryoablation technology, surgical technique, oncologic outcomes, and complication rates have improved dramatically over the past few decades, shifting this treatment modality from investigational status to an established therapeutic option. In this review, we focus on the most up-to-date oncologic and functional outcomes, as well as complications of salvage cryotherapy for radiation-recurrent prostate cancer
- …