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We investigate the degree of indistinguishability of cascaded photons emitted from a three-level quantum
ladder system; in our case the biexciton-exciton cascade of semiconductor quantum dots. For the three-
level quantum ladder system we theoretically demonstrate that the indistinguishability is inherently limited
for both emitted photons and determined by the ratio of the lifetimes of the excited and intermediate states.
We experimentally confirm this finding by comparing the quantum interference visibility of noncascaded
emission and cascaded emission from the same semiconductor quantum dot. Quantum optical simulations
produce very good agreement with the measurements and allow us to explore a large parameter space.
Based on our model, we propose photonic structures to optimize the lifetime ratio and overcome the limited
indistinguishability of cascaded photon emission from a three-level quantum ladder system.
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Indistinguishable photons are one of the most essential
resources in photonic quantum technologies since they
mediate photon-photon interactions by the Hong-Ou-
Mandel effect [1] needed for quantum information process-
ing [2], quantum sensing [3], and quantum networks [4].
Although probabilistic generation of indistinguishable
photon pairs by parametric down-conversion has been used
as the work horse in quantum optics experiments and in
proof-of-principle applications, there is a strong need for
the on-demand generation of near-unity indistinguishable
photons. This need has led to a whole research field
investigating novel solid-state quantum emitters [5], opti-
mizing all relevant parameters to fabricate the ideal
quantum light source. One promising quantum light source
to reach these goals are epitaxially grown semiconductor
quantum dots (QDs), emitting on-demand [6] near unity
indistinguishable single photons [7,8]. QDs have recently

been used to perform photonic quantum simulations [9–11]
as well as photonic quantum sensing [12,13]. In addition,
QDs are the only quantum emitter able to generate on-
demand polarization entangled photon pairs [14], using the
biexciton-exciton cascade [15]. This puts QDs on the map
as ideal quantum light sources to realize quantum relays
[16–18] and quantum repeaters based on the Shapiro Lloyd
scheme [19]. However, these applications require the
simultaneous generation of near-unity indistinguishable
and maximally entangled photon pairs. Despite, large
research efforts [14,20–22] achieving highly indistinguish-
able photons from the biexciton-exciton cascade has proven
to be elusive even under optimized excitation conditions
[23]. Here, we show that this stems from the intrinsic
properties of the quantum three-level ladder system, inher-
ent to QDs, which reduces the maximally achievable
indistinguishability of the emitted photons. To this end,
we first demonstrate analytically that the indistinguish-
ability is identical for the emission from either of the
cascaded transitions, albeit limited. This finding is then
tested experimentally by measuring the photon indistin-
guishability for emission from a quantum two-level system
and a quantum three-level ladder system using the same
quantum emitter. Here, we evaluate data from four different
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QDs and extract the relevant parameters. Finally, we
perform quantum-optical simulations exploring a wide
parameter space. The results are in good agreement with
our measurements. To overcome the limitations of three-
level quantum ladder systems we propose nanoengineering
the lifetimes of the involved excited states.
To gain theoretical insight into the fundamental limits of

the trace purity of photons obtained from the cascaded two-
photon emission, we consider a three-level quantum ladder
system with ground state jGi, intermediate state jXi, and
excited state jXXi. Using a short laser pulse, the system is
initialized to the excited state jXXi at t ¼ 0 and allowed to
decay from jXXi → jXi → jGi via the cascaded emission
of two photons. The emitted two-photon state can be easily
computed using a scattering matrix formalism [24,25] as

jψi¼
Z

∞

t¼0

Z
∞

t0¼t
dtdt0fðt; t0Þb†XX→XðtÞb†X→Gðt0Þjvac;Gi;

ð1aÞ

where b†XX→XðtÞ and b†X→GðtÞ are the time-domain creation
operators describing the photonic modes that the transitions
jXXi → jXi and jXi → jGi couple to, and fðt; t0Þ is the
two-photon wave function of the emitted photon given by

fðt; t0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
γXγXX

p
e−iωXX→Xte−iωX→Gt0e−γXðt0−tÞ=2e−γXXt=2;

ð1bÞ

where ωXX→X;ωX→G are the frequencies of the transitions
jXXi → jXi; jXi → jGi and γXX, γX are the decay rates of
the states jXXi; jXi. The single photon emitted from the
transition jXXi → jXi can then be described by a mixed
state obtained by tracing the pure two-photon state (jψihψ j)
over the modes described by operator bX→GðtÞ. The density
matrix of this state is calculated from Eq. (1a):

ρ ¼ TrbX→G
½jψihψ j�

¼
Z

∞

0

Z
∞

0

dtdt0ρðt; t0Þb†XX→XðtÞjvacihvacjbXX→Xðt0Þ;

ð2aÞ

where

ρðt; t0Þ ¼ γXXeiωXX→Xðt0−tÞe−γXXðtþt0Þ=2e−γX jt−t0j=2: ð2bÞ

Equation (2) shows that the state of the photon from the
transition jXXi → jXi, while generally being a nonsepar-
able state, becomes separable if the decay rate of the
intermediate state vanishes. The nonseparability of the
emitted photon immediately limits the indistinguishability
of photons emitted from such a cascade, since for the
emitted photons to be identical they must be describable as
pure states and thus separable. The separability of this

single-photon state can be quantified by its trace purity P
which can be analytically evaluated using Eq. (2) [26]:

P ¼ TrbXX→X
½ρ2� ¼ γXX

γXX þ γX
: ð3Þ

For QDs where typically γXX ¼ 2γX, the maximum achiev-
able trace purity is limited to ∼0.66. We would like to note
that Eq. (3) is independent of the separation time between
the emitted photons. It gives an upper bound for the
indistinguishability of photons from a three-level system
with perfect coherence. Additional spectral diffusion will
reduce the achievable indistinguishability further.
The theoretical trace purity describes the indistinguish-

ability of the emitted single photons, but cannot be
measured directly experimentally. A more experimentally
accessible quantity is the interference visibility parameter v
extracted from two-photon interference experiments
[27,28]. However, for systems with negligible emission
with photon numbers > 1, it has been recently shown that
P and v are identical [27] and, consequently, v is a measure
for the indistinguishability of the emitted photons.
In the following we compare a quantum two-level

system and a three-level quantum ladder system, by
measuring the second-order coherence and two-photon
interference of four different semiconductor QDs. Our
two-level quantum system is an exciton state in a semi-
conductor QD, which is directly addressed in a pure s-shell
resonant excitation scheme, depicted in Fig. 1(a). When the
system recombines back to the ground state, a resonance
fluorescence photon is emitted. The experimentally inves-
tigated three-level quantum ladder system is the biexciton-
exciton cascade of semiconductor QDs. In this system, the
biexciton state is resonantly addressed in a two-photon
process (two-photon excitation) and recombines via the
exciton state into the ground state resulting in the character-
istic biexciton-exciton cascade, shown in Fig. 1(b). This
cascade is crucial to generate entangled photon pairs and
has been extensively studied in literature [29–31].
We use GaAs/AlGaAs QDs grown via the droplet-

etching method [32]. A detailed description of the sample
structure can be found in Ref. [22]. Remarkably these
QDs currently hold the record for highest degree of
entanglement when generating polarization entangled pho-
ton pairs [33], lowest multiphoton emission probability
[34], and are among the brightest entangled photon sources
to date [35,36].
All experiments are performed in a confocal microphoto-

luminescence spectroscopy setup [37] (see Supplemental
Material [38] formore details anda schematic,which includes
Refs. [39,40]). The second-order autocorrelation is measured
in a Hanbury Brown–Twiss type experiment whereas the
two-photon interference visibility is measured using a Hong-
Ou-Mandel setup.
The spectrum of the exciton under pure s-shell

resonant excitation [Fig. 1(c)] consists of a single sharp
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peak. Power-dependent resonance fluorescence spectros-
copy [Fig. 1(e)] reveals clean Rabi oscillation (see
Supplemental Material [38] for analysis) up to 7π proving
the coherence of this excitation scheme. The same mea-
surements for the exciton and biexciton under two-photon
excitation are shown in Figs. 1(d) and 1(f). In the spectrum,
two lines for the exciton (red) and biexciton (blue) can be
seen with a wavelength difference of 1.9 nm (3.7 meV),
which stems from the Coulomb interaction between the two
excitons, resulting in an energetically lower (longer wave-
length) biexciton photon. In between those two excitonic
lines are some other lines stemming from the QD, which
are additionally spectrally filtered for the following corre-
lation measurements by the transmission spectrometer. In
this excitation scheme, Rabi oscillations up to 16π can be
distinguished. The difference to the s-shell resonant exci-
tation stems from the fact that here the laser can be filtered
spectrally in addition to cross polarization, allowing much

higher excitation powers. All further measurements are
performed with an excitation power corresponding to a
pulse area π, where the system is maximally inverted.
Figure 2 shows correlation measurements for both quantum
systems. The second-order autocorrelation function is
shown in Figs. 2(a),2(c), and 2(e) in a semilogarithmic
plot. For all measurements, the peak at time delay zero is
strongly suppressed proving almost background-free sin-
gle-photon emission. Exact results are shown in Table 1 of
the Supplemental Material [38]. For all four QDs we
investigated, the measurements under two-photon excita-
tion show lower values than for pure s-shell resonant
excitation, which we attribute to the suppressed reexcitation
processes [34,41].
Next, we investigate the indistinguishability by measur-

ing the two-photon interference of two consecutively
emitted photons in a Hong-Ou-Mandel type experiment
under the same excitation conditions as above. The
measurement result is presented in Figs. 2(b),2(d), and 2(f),
where the suppression of the center peak is a measure for
the visibility v and characterizes the indistinguishability of

( f )(e)

(d)(c)

(b)(a)

FIG. 2. Second-order intensity correlation histogram of the
(a) exciton (X) under s-shell resonant excitation (RF) with

gð2ÞRF;Xð0Þ ¼ ð8.16� 0.55Þ × 10−3, two-photon excitation (TPE)

of the (c) exciton with gð2ÞTPE;Xð0Þ ¼ ð9.13� 1.61Þ × 10−4 and

(e) the biexciton (XX) with gð2ÞTPE;XXð0Þ ¼ ð1.79� 0.30Þ × 10−3.
Hong-Ou-Mandel histograms of the (b) exciton emission under
resonant excitation vRF;X ¼ 92.3� 0.1%, two-photon excitation
of the (d) exciton with vTPE;X ¼ 56.7� 0.6% and (f) the biexci-
ton vTPE;XX ¼ 60.0� 0.5%.

(c) (d)

(f)(e)

(b)(a)

FIG. 1. Characterization of the QD under s-shell resonant
excitation (a),(c),(e) and two-photon excitation (b),(d),(f).
(a) s-shell resonant excitation scheme. The exciton level (jXi)
is directly addressed by the excitation laser. Under recombination
into the ground state (jGi) a resonance fluorescence (RF) photon
is emitted. (b) Two-photon excitation (TPE) scheme. The
biexciton state (jXXi) is resonantly driven via a two-photon
process, which recombines via the exciton state into the ground
state, resulting in a biexciton (blue)–exciton (red) cascade.
The H polarized photons are shaded to illustrate that one
polarization component is suppressed by the cross-polarization
setup. (c) Resonance fluorescence spectrum of the exciton.
(d) Two-photon excitation spectrum with the exciton (red) at
lower wavelength compared to the biexciton (blue). Excitation
laser power-dependent Rabi oscillation up to a pulse area of
(e) 7π under s-shell resonant excitation and (f) 16π for two-
photon excitation.
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two photons. The experimental methods and results of
all QDs under both excitation schemes are summarized
in Table 1 of the Supplemental Material [38]. The raw
Hong-Ou-Mandel visibility is above 90% for all QDs under
pure s-shell resonant excitation, whereas it maximally
reaches 64% under two-photon excitation, consistent with
theoretical predictions for a cascaded emission as dis-
cussed above.
In order to obtain a deeper insight into how the biexciton-

exciton cascade results in a reduced Hong-Ou-Mandel
visibility, we performed quantum-optical simulations using
the Quantum Toolbox in PYTHON (QuTiP) [42]. We model
the cascade as a three-level quantum ladder system and use
a quantum-optical master equation approach described in
detail in Ref. [43]. These simulations go beyond the
analytical theoretical considerations above as they take
into account the excitation laser pulse width as well as
dephasing. We neglect the fine structure splitting in the
simulation since one fine structure channel is suppressed
due to the cross-polarized resonance fluorescence setup.
The Hamiltonian in the rotating frame at the laser frequency
then reads

HðtÞ ¼ ½μEðtÞ�2
2Eb

ðjGihXXj þ jXXihGjÞ; ð4Þ

where μ is the electric dipole moment, EðtÞ the electric
field, and Eb is the binding energy of the biexciton. The
crystal ground state jGi and the biexciton level jXXi are
coupled by the electromagnetic field of a Gaussian laser
pulse of length (FWHM) τX=50, where τX denotes the
exciton lifetime. The pulse area

AðtÞ ¼
Z

t

0

dt0
½μEðt0Þ�2
ℏEb

ð5Þ

is set to π to achieve a maximum population inversion. The
two radiative decays between the three levels jXXi → jXi
and jXi → jGi are coupled via two collapse operators
cXX ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1=τXX
p

e and cX ¼ ffiffiffiffiffiffiffiffiffiffi
1=τX

p
i, where e ¼ jXihXXj

and i ¼ jGihXj are the lowering operators of the excited
and the intermediate state. We disregard any nonradiative
decay mechanisms, as they do not contribute to the photon
statistics measurements. The population evolution of this
system is depicted in Fig. 3(a). During one excitation pulse
the biexciton population builds up, reaching nearly unity. It
then decays into the intermediate exciton state under the
emission of a photon. This leads to a buildup of the exciton
population, which decays into the ground state emitting
another photon.
Having set up the dynamical quantum system, we turn

our interest to how the properties of the emitted photons
depend on the ratio of the two transition lifetimes τXX=τX.
To investigate the single photon character, we calculate the
second-order correlation function normalized by the total
photon number via the equation

gð2Þð0Þ ¼ 2
R
T
0

R
T
0 dtdτhs†ðtÞs†ðtþ τÞsðtþ τÞsðtÞi

ðR T
0 dths†ðtÞsðtÞiÞ2 ; ð6Þ

where s and s† are the lowering and raising operators of the
studied transition. The factor 2 is included to also take into
account negative values of τ. The value of gð2Þð0Þ is plotted
in Fig. 3(b) as a function of the lifetime τXX for a constant
lifetime τX. With increasing τXX the value of gð2Þð0Þ
decreases by three orders of magnitude. As τX is fixed,
increasing τXX increases the total time that it takes the
system to return to the ground state, which reduces
reexcitation during the presence of the laser pulse and
thus multiphoton emission [34,41]. For the dots studied in
this work the lifetime ratio is 0.78� 0.06 > τXX=τX >
0.63� 0.04 which results in values on the order of
gð2Þð0Þ ¼ 10−5, listed in Table 1 of the Supplemental
Material [38] for comparison to the measured values.
We continue by simulating the indistinguishability of the
emitted photons in a Hong-Ou-Mandel (HOM) interfer-
ometer as outlined in Ref. [43]:

gð2ÞHOMð0Þ ¼
1

2
gð2Þð0Þ þ 1

2
ð1 − jgð1Þð0Þj2Þ: ð7Þ

(a) (b)

(c) (d)

FIG. 3. Simulation of the two-photon excitation of a three-level
quantum ladder system with a Gaussian pulse of duration
(FHWM) τX=50 which is a commonly used pulse length in
QD experiments. (a) Evolution of the biexciton (blue) and exciton
(red) state population excited by a π pulse as a function of the
exciton lifetime. The exciton population builds up as the
biexciton decays. (b) Simulated second-order coherence function
at zero time delay gð2Þð0Þ for different biexciton lifetimes. With
increasing τXX the gð2Þð0Þ value decreases by 3 orders of
magnitude for a fixed exciton lifetime τX. (c) Hong-Ou-Mandel
visibility of the two transitions in dependence of the lifetime ratio.
The visibility decreases drastically from near unity for increasing
τXX=τX . Inset: Enlargement showing experimental data close to
the simulated curve. (d) By adding a phenomenological pure
dephasing acting with equal strength on both transitions for a
fixed value of τXX=τX ¼ 0.5, the obtainable Hong-Ou-Mandel
visibility of both transitions decreases with a higher impact on the
exciton transition visibility.
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In this normalization, for a nonideal single-photon source

with gð2Þð0Þ > 0 the value gð2ÞHOMð0Þ would increase as the
beam splitter with the two detectors simultaneously repre-
sents a Hanbury Brown–Twiss experiment for each exci-
tation pulse. As gð2Þð0Þ ≈ 0 both in experiment and
simulation for the studied parameter space, we focus on
the visibility

v ¼ jgð1Þð0Þj2 ¼ 2
R
T
0

R
T
0 dtdτjhs†ðtþ τÞsðtÞij2
ðR T

0 dths†ðtÞsðtÞiÞ2 : ð8Þ

The dependence of the visibility parameter with respect to
the lifetime ratio is presented in Fig. 3(c). It decreases from
near unity for small values of τXX=τX to almost zero for
large ratios. The experimental values of approximately 60%
[inset Fig. 3(c)] match the simulated curve well. Tuning the
ratio over a wide range could be experimentally realized by
embedding the QD into a nanophotonic resonator like
photonic crystals [44], micropillars [45], bull’s eye cavities
[46], paraboloids [47], and even planar cavities [29], which
selectively enhances or reduces the lifetimes τXX and τX.
We would like to note that asymmetric Purcell enhance-
ment of both transitions is preferred over Purcell suppres-
sion to maintain efficient photon extraction from the cavity.
The simulation results for the lifetime ratio of our measured
QDs are given in Table 1 in the Supplemental Material [38].
As discussed above, the limited visibilities for both

transitions result from the entangled nature of the cascaded
emission. However, it can also be explained in a simple
picture by the finite lifetime of the exciton. The photons
emitted by the biexciton are spectrally broadened due to
the linewidth of its final state (jXi) resulting from its
finite lifetime. On the other hand, photons emitted from the
exciton state are subject to a timing jitter induced by the
cascade.
Finally, we investigate how introducing additional

dephasing affects the two-photon interference visibilities
of both transitions. To this end, we introduce a phenom-
enological pure dephasing acting with equal strength on
both levels, described by two additional collapse operators
of the form cXXN ¼ ffiffiffiffiffi

γN
p jXXihXXj and cXN ¼ ffiffiffiffiffi

γN
p jXihXj.

The visibility of both transitions is presented in Fig. 3(d) as
a function of the dephasing rate γN for a fixed ratio of
τXX=τX ¼ 0.5. With increasing dephasing rate, the visibil-
ity of both transitions decreases whereby the visibility of
the exciton emission (red) is lower than that of the biexciton
emission (blue). This stems from the faster biexciton
emission rate compared to that of the exciton, so that
the biexciton state is less affected by the same dephasing
rate. This is also consistent with our experimental mea-
surements discussed above, where typically a higher
visibility was measured for the biexciton transition.
In summary, we investigated the impact of the inter-

mediate state on the indistinguishability of cascaded
photons emitted by a three-level quantum ladder system

and experimentally confirmed our findings using the
biexciton-exciton cascade in semiconductor QDs. The
key parameter for reaching near-unity indistinguishability
for photons stemming from a cascaded emission is the ratio
between the lifetimes of the two excited states. Therefore,
asymmetric Purcell enhancement of these states is expected
to overcome the limitation on the indistinguishability of
cascaded photons emitted by a three-level quantum ladder
system, bringing the indistinguishability to the dephasing-
limited values of a resonantly driven two-level system. This
would enable the simultaneous generation of near-unity
indistinguishable and entangled photon pairs required for
photonic entanglement-based quantum repeater schemes
(see Supplemental Material [38] for further discussion,
which includes Refs. [48–51]).
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