3,503 research outputs found
Using Pattern Languages in Participatory Design
In this paper, we examine the contribution that pattern languages could make to user participation in the design of interactive systems, and we report on our experiences of using pattern languages in this way.
In recent years, there has been a growing interest in the use of patterns and pattern languages in the design of interactive systems. Pattern languages were originally developed by the architect, Christopher Alexander, both as a way of understanding the nature of building designs that promote a ‘humane’ or living built environment; and as a practical tool to aid in participatory design of buildings.
Our experience suggests that pattern languages do have considerable potential to support participatory design in HCI, but that many pragmatic issues remain to be resolved
Total Cross Sections for Neutron Scattering
Measurements of neutron total cross-sections are both extensive and extremely
accurate. Although they place a strong constraint on theoretically constructed
models, there are relatively few comparisons of predictions with experiment.
The total cross-sections for neutron scattering from O and Ca are
calculated as a function of energy from ~MeV laboratory energy with a
microscopic first order optical potential derived within the framework of the
Watson expansion. Although these results are already in qualitative agreement
with the data, the inclusion of medium corrections to the propagator is
essential to correctly predict the energy dependence given by the experiment.Comment: 10 pages (Revtex 3.0), 6 fig
Ultra--cold gases and the detection of the Earth's rotation: Bogoliubov space and gravitomagnetism
The present work analyzes the consequences of the gravitomagnetic effect of
the Earth upon a bosonic gas in which the corresponding atoms have a
non--vanishing orbital angular momentum. Concerning the ground state of the
Bogoliubov space of this system we deduce the consequences, on the pressure and
on the speed of sound, of the gravitomagnetic effect. We prove that the effect
on a single atom is very small, but we also show that for some thermodynamical
properties the consequences scale as a non--trivial function of the number of
particles.Comment: 4 page
Observation of magnetocoriolis waves in a liquid metal Taylor-Couette experiment
The first observation of fast and slow magnetocoriolis (MC) waves in a
laboratory experiment is reported. Rotating nonaxisymmetric modes arising from
a magnetized turbulent Taylor-Couette flow of liquid metal are identified as
the fast and slow MC waves by the dependence of the rotation frequency on the
applied field strength. The observed slow MC wave is damped but the observation
provides a means for predicting the onset of the Magnetorotational Instability
Effect of short range order on electronic and magnetic properties of disordered Co based alloys
We here study electronic structure and magnetic properties of disordered CoPd
and CoPt alloys using Augmented Space Recursion technique coupled with the
tight-binding linearized muffin tin orbital (TB-LMTO) method. Effect of short
range ordering present in disordered phase of alloys on electronic and magnetic
properties has been discussed. We present results for magnetic moments, Curie
temperatures and electronic band energies with varying degrees of short range
order for different concentrations of Co and try to understand and compare the
magnetic properties and ordering phenomena in these systems.Comment: 15 pages,17 postscript figures,uses own style file
Photoacoustic imaging of intracardiac medical devices using internal illumination of carbon nanotube / PDMS composite coatings
Accurate localisation of medical devices is of crucial importance for a wide range of ultrasound-guided interventions. In this study, we investigated visualisation of medical devices by photoacoustic excitation of optically absorbing coatings. Photoacoustic excitation light was provided through optical fibres positioned within a cardiac needle and a steerable-tip catheter. Using a swine heart model, photoacoustic and B-mode ultrasound images were received with a clinical ultrasound scanner in conjunction with a transoesophageal imaging probe. In the photoacoustic images, prominent signals were obtained from the coatings. This study demonstrated that photoacoustic imaging could play a useful role with medical device imaging
Fouling Release Nanostructured Coatings based on PDMS-polyurea Segmented Copolymers
http://www.elsevier.com/wps/find/journaldescription.cws_home/30466/description#descriptionThe bulk and surface characteristics of a series of coatings based on PDMS-polyurea segmented copolymers were correlated to their fouling release performance. Incorporation of polyurea segments to PDMS backbone gives rise to phase separation with the extensively hydrogen bonded hard domains creating an interconnected network that imparts mechanical rigidity. Increasing the compositional complexity of the system by including fluorinated or POSS-functionalized chain extenders or through nanoclay intercalation, confers further thermomechanical improvements. In analogy to the bulk morphology, the surface toporgraphy also reflects the compositional complexity of the materials, displaying a wide range of motifs. Investigations on settlement and subsequent removal of Ulva sporelings on those nanostructured surfaces indicate that the work required to remove the microorganisms is significantly lower compared to coatings based on standard PDMS homopolymer. All in all, the series of materials considered in this study demonstrate advanced fouling release properties, while exhibiting superior mechanical properties and thus, long term durability. (C) 2010 Elsevier Ltd. All rights reserved.This publication is based on work supported by the Office of Naval Research. This publication is also based on work supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). We acknowledge facility support through the Cornell Center for Materials Research (CCMR) and the Nanobiotechnology Center (NBTC)
Amphiphilic modified-styrene copolymer films: Antifouling/fouling release properties against the green alga Ulva linza
Surface-active copolymers of a styrene carrying a polysiloxane side chain (SSi) and a triethyleneglycol monomethyl ether-modified pentafluorostyrene (EFS) (39 and 77 mol% EFS) were prepared and incorporated (8 wt% loading) into a polydimethyl siloxane (PDMS) matrix to produce crosslinked blend films. The wettability of the surface-active copolymer films and PDMS-blend films was investigated by contact angle measurements. An angle-resolved X-ray photoelectron spectroscopy (XPS) of the surface chemical composition before and after immersion in water for 7 days enabled location of the hydrophilic oxyethylenic segments of EFS within the top 10 nm from the film surface. Laboratory bioassays on the blend films against the marine green alga Ulva linza evidenced that the films containing the copolymer with the larger EFS content showed greater resistance to settlement of zoospores of U. linza, whereas both films had superior fouling-release properties of sporelings (young plants) compared to the PDMS standard films
Doing it differently: Engaging interview participants with imaginative variation
Imaginative variation was identified by Husserl (1936/1970) as a phenomenological technique for the purpose of elucidating the manner in which phenomena appear to consciousness. Briefly, by engaging in the phenomenological reduction and using imaginative variation, phenomenologists are able to describe the experience of consciousness, having stepped outside of the natural attitude through the epochē. Imaginative variation is a stage aimed at explicating the structures of experience, and is best described as a mental experiment. Features of the experience are imaginatively altered in order to view the phenomenon under investigation from varying perspectives. Husserl argued that this process will reveal the essences of an experience, as only those aspects that are invariant to the experience of the phenomenon will not be able to change through the variation.
Often in qualitative research interviews, participants struggle to articulate or verbalise their experiences. The purpose of this article is to detail a radical and novel way of using imaginative variation with interview participants, by asking the participants to engage with imaginative variation, in order to produce a rich and insightful experiential account of a phenomenon. We will discuss how the first author successfully used imaginative variation in this way in her study of the erotic experience of bondage, discipline, dominance & submission, and sadism & masochism (BDSM), before considering the usefulness of this technique when applied to areas of study beyond sexuality
Immune function and dysfunction are determined by lymphoid tissue efficacy
Lymphoid tissue returns to a steady state once each immune response is resolved, and although this occurs multiple times throughout life, its structural integrity and functionality remain unaffected. Stromal cells orchestrate cellular interactions within lymphoid tissue, and any changes to the microenvironment can have detrimental outcomes and drive disease. A breakdown in lymphoid tissue homeostasis can lead to a loss of tissue structure and function that can cause aberrant immune responses. This Review highlights recent advances in our understanding of lymphoid tissue function and remodelling in adaptive immunity and in disease states. We discuss the functional role of lymphoid tissue in disease progression and explore the changes to lymphoid tissue structure and function driven by infection, chronic inflammatory conditions and cancer. Understanding the role of lymphoid tissues in immune responses to a wide range of pathologies allows us to take a fuller systemic view of disease progression
- …