211 research outputs found

    The balance between accumulation and loss of soil organic matter in subarctic forest is related to ratios of saprotrophic, ecto- and ericoid mycorrhizal fungal guilds

    Get PDF
    Free-living saprotrophic fungi and symbiotic mycorrhizal fungi affect organic matter dynamics differently because of contrasting ecological adaptations. We investigated how mass-loss, C:N-ratio and stable isotope dynamics of leaf litter and humus substrates depended on presence of living tree roots and associated fungal communities in a forest-to-tundra ecotone over three years. Litter mass-loss was stimulated by tree roots, contrary to a Gadgil effect. Increases in the litter nitrogen pool and 815N suggested import of nitrogen from deeper soil by the dominating saprotrophic fungi. Over time, humus first lost, then gained, mass, and corresponding shifts in 815N and 813C suggested fluctuating pools of fine roots and fungal mycelium. Ectomycorrhizal tree roots consistently reduced longer-term humus mass-gain, counteracting positive effects of ericoid roots and associated fungi. Across all substrates, mass dynamics correlated with the balance between ectomycorrhizal and littersaprotrophic fungi, both linked to mass-loss, and ericaceous shrubs and associated fungi, linked to mass-gain

    Changes in the root fungal microbiome of strawberry following application of residues of the biofumigant oilseed radish

    Get PDF
    Biofumigation has been proposed as an environmentally friendly method of plant protection against soil-borne pathogens, but its effects on microbial communities are still incompletely understood. Using high throughput DNA sequencing, we investigated the effects of oilseed radish residues on the root fungal microbiome of strawberry in the presence of a soil-borne fungal pathogen, Verticillium dahliae. Results of our greenhouse study show that early flowering occurred in response to residue addition, suggesting a plant stress-response and there was a significant decrease in berry yield. The fungal microbiome of roots was significantly restructured by both biofumigation and inoculation with Verticillium. In particular, the abundance of root endophyte- and arbuscular mycorrhizal functional guilds was reduced significantly as a result of biofumigant and V. dahliae addition, whereas the abundance of saprotrophs increased significantly when both treatments were applied together. Alpha diversity analyses of fungi associated with roots indicated a significant increase in species richness following Verticillium inoculation, whereas the biofumigant alone or in the presence of V. dahliae resulted in no significant effect, suggesting that apparently some rare taxa may have been enriched/stimulated in the presence of the pathogen. Further investigations should reveal whether negative effects of biofumigation on potentially beneficial root associated endophytes and arbuscular mycorrhizal fungi are host genotype- or soil-dependent

    Ericaceous dwarf shrubs contribute a significant but drought-sensitive fraction of soil respiration in a boreal pine forest

    Get PDF
    Boreal forests often have a dense understorey of ericaceous dwarf shrubs with ecological adaptations that contrast those of the canopy-forming trees. It is therefore important to quantify contributions by understorey shrubs to ecosystem processes and disentangle shrub- and tree-driven responses to climatic factors. We quantified soil respiration driven by the pine canopy and the ericaceous shrub understorey over 3 years, using a factorial pine root exclusion and shrub removal experiment in a mature Pinus sylvestris forest. Soil temperature and moisture-related responses of respiration attributed to autotrophs (shrubs, pine roots) and heterotrophs were compared. Additionally, we assessed effects of interactions between these functional groups on soil nitrogen availability and respiration. Understorey shrubs accounted for 22% +/- 10% of total autotrophic respiration, reflecting the ericaceous proportion of fine root production in the ecosystem. Heterotrophic respiration constituted about half of total soil respiration. Shrub-driven respiration was more susceptible to drought than heterotrophic- and pine-driven respiration. While the respiration attributed to canopy and understorey remained additive, indicating no competitive release, the plant guilds competed for soil N. Synthesis. Ericaceous understorey shrubs accounted for a small, yet significant, share of total growing season soil respiration. Overlooking understorey respiration may lead to erroneous partitioning and modelling of soil respiration mediated by functional guilds with contrasting responses to soil temperature and moisture. A larger contribution by heterotrophs and pine root-associated organisms to soil respiration under drought conditions could have important implications for soil organic matter accumulation and decomposition as the climate changes in boreal forests

    Minimizing tillage modifies fungal denitrifier communities, increases denitrification rates and enhances the genetic potential for fungal, relative to bacterial, denitrification

    Get PDF
    Nitrous oxide (N2O) emissions from arable soils are predominantly caused by denitrifying microbes, of which fungal denitrifiers are of particular interest, as fungi, in contrast to bacteria, terminate denitrification with N2O. Reduced tillage has been shown to increase gaseous nitrogen losses from soil, but knowledge of how varying tillage regimes and associated soil physical and chemical alterations affect fungal denitrifiers is limited. Based on results from a long-term (>40 years) tillage experiment, we show that non-inversion tillage resulted in increased potential denitrification activity in the upper soil layers, compared to annual or occasional (every 4-5 years) conventional inversion tillage. Using sequence-corrected abundance of the fungal nirK gene, we further identified an increased genetic potential for fungal denitrification, compared to that caused by bacteria, with decreasing tillage intensity. Differences in the composition and diversity of the fungal nirK community imply that different tillage regimes select for distinct fungal denitrifiers with differing functional capabilities and lifestyles, predominantly by altering carbon and nitrogen related niches. Our findings suggest that the creation of organic hotspots through stratification by non-inversion tillage increases the diversity and abundance of fungal denitrifier communities and modifies their composition, and thus their overall relevance for N2O production by denitrification, in arable soils

    A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen

    Get PDF
    Tundra ecosystems are global belowground sinks for atmospheric CO2. Ongoing warming-induced encroachment by shrubs and trees risks turning this sink into a CO2 source, resulting in a positive feedback on climate warming. To advance mechanistic understanding of how shifts in mycorrhizal types affect long-term carbon (C) and nitrogen (N) stocks, we studied small-scale soil depth profiles of fungal communities and C-N dynamics across a subarctic-alpine forest-heath vegetation gradient. Belowground organic stocks decreased abruptly at the transition from heath to forest, linked to the presence of certain tree-associated ectomycorrhizal fungi that contribute to decomposition when mining N from organic matter. In contrast, ericoid mycorrhizal plants and fungi were associated with organic matter accumulation and slow decomposition. If climatic controls on arctic-alpine forest lines are relaxed, increased decomposition will likely outbalance increased plant productivity, decreasing the overall C sink capacity of displaced tundra

    Analysis of mycobiomes to uncover biodiversity: a case study between soil fungi and orchid species in Sweden

    Get PDF
    Abstracts from the April 12-14, 2019 MASC Conferenc

    Editorial: The Use and Understanding of Style Differences to Enhance Learning

    Get PDF
    Comparison of Molecular Function annotations of R. solani genes between the induced (log2FPKM > 0) and repressed (log2FPKM < 0) genes when challenged with S4 Serratia proteamaculans. (FPMK = fragments per kilobase of exon per million fragments mapped

    Reviews and syntheses: Biological weathering and its consequences at different spatial levels - from nanoscale to global scale

    Get PDF
    Plant nutrients can be recycled through microbial decomposition of organic matter but replacement of base cations and phosphorus, lost through harvesting of biomass/biofuels or leaching, requires de novo supply of fresh nutrients released through weathering of soil parent material (minerals and rocks). Weathering involves physical and chemical processes that are modified by biological activity of plants, microorganisms and animals. This article reviews recent progress made in understanding biological processes contributing to weathering. A perspective of increasing spatial scale is adopted, examining the consequences of biological activity for weathering from nanoscale interactions, through in vitro and in planta microcosm and meso-cosm studies, to field experiments, and finally ecosystem and global level effects. The topics discussed include the physical alteration of minerals and mineral surfaces; the composition, amounts, chemical properties, and effects of plant and microbial secretions; and the role of carbon flow (including stabilisation and sequestration of C in organic and inorganic forms). Although the predominant focus is on the effects of fungi in forest ecosystems, the properties of biofilms, including bacterial interactions, are also discussed. The implications of these biological processes for modelling are discussed, and we attempt to identify some key questions and knowledge gaps, as well as experimental approaches and areas of research in which future studies are likely to yield useful results. A particular focus of this article is to improve the representation of the ways in which biological processes complement physical and chemical processes that mobilise mineral elements, making them available for plant uptake. This is necessary to produce better estimates of weathering that are required for sustainable management of forests in a post-fossil-fuel economy. While there are abundant examples of nanometre- and micrometre-scale physical interactions between microorganisms and different minerals, opinion appears to be divided with respect to the quantitative significance of these observations for overall weathering. Numerous in vitro experiments and microcosm studies involving plants and their associated microorganisms suggest that the allocation of plant-derived carbon, mineral dissolution and plant nutrient status are tightly coupled, but there is still disagreement about the extent to which these processes contribute to field-scale observations. Apart from providing dynamically responsive pathways for the allocation of plant-derived carbon to power dissolution of minerals, mycorrhizal mycelia provide conduits for the long-distance trans-portation of weathering products back to plants that are also quantitatively significant sinks for released nutrients. These mycelial pathways bridge heterogeneous substrates, reducing the influence of local variation in C : N ratios. The production of polysaccharide matrices by biofilms of interacting bacteria and/or fungi at interfaces with mineral surfaces and roots influences patterns of production of antibiotics and quorum sensing molecules, with concomitant effects on microbial community structure, and the qualitative and quantitative composition of mineral-solubilising compounds and weathering products.Patterns of carbon allocation and nutrient mobilisation from both organic and inorganic substrates have been studied at larger spatial and temporal scales, including both ecosystem and global levels, and there is a generally wider degree of acceptance of the "systemic" effects of microorganisms on patterns of nutrient mobilisation. Theories about the evolutionary development of weathering processes have been advanced but there is still a lack of information connecting processes at different spatial scales. Detailed studies of the liquid chemistry of local weathering sites at the micrometre scale, together with upscaling to soil-scale dissolution rates, are advocated, as well as new approaches involving stable isotopes

    The Swarm Initial Field Model for the 2014 geomagnetic field

    Get PDF
    Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT
    corecore