7,548 research outputs found

    Data compression and regression based on local principal curves.

    Get PDF
    Frequently the predictor space of a multivariate regression problem of the type y = m(x_1, …, x_p ) + ε is intrinsically one-dimensional, or at least of far lower dimension than p. Usual modeling attempts such as the additive model y = m_1(x_1) + … + m_p (x_p ) + ε, which try to reduce the complexity of the regression problem by making additional structural assumptions, are then inefficient as they ignore the inherent structure of the predictor space and involve complicated model and variable selection stages. In a fundamentally different approach, one may consider first approximating the predictor space by a (usually nonlinear) curve passing through it, and then regressing the response only against the one-dimensional projections onto this curve. This entails the reduction from a p- to a one-dimensional regression problem. As a tool for the compression of the predictor space we apply local principal curves. Taking things on from the results presented in Einbeck et al. (Classification – The Ubiquitous Challenge. Springer, Heidelberg, 2005, pp. 256–263), we show how local principal curves can be parametrized and how the projections are obtained. The regression step can then be carried out using any nonparametric smoother. We illustrate the technique using data from the physical sciences

    Eluate derived by extracorporal antibody-based immunoadsorption elevates the cytosolic Ca2+ concentration in podocytes via B-2 kinin receptors

    Get PDF
    Background/Aim: Patients with idiopathic focal segmental glomerulosclerosis (FSGS) often develop a recurrence of the disease after kidney transplantation. In a number of FSGS patients, plasmapheresis and immunoadsorption procedures have been shown to transiently reduce proteinuria and are thought to do this by eliminating a circulating factor. Direct cellular effects of eluates from immunoadsorption procedures on podocytes, the primary target of injury in FSGS, have not yet been reported. Methods: Eluates were derived from antibody-based immunoadsorption of a patient suffering from primary FSGS, a patient with systemic lupus erythematosus, and a healthy volunteer. The cytosolic free Ca2+ concentration ({[}Ca2+](i)) of differentiated podocytes was measured by single-cell fura-2 microfluorescence measurements. Free and total immunoreactive kinin levels were measured by radioimmunoassay. Results: FSGS eluates increased the {[}Ca2+](i) levels concentration dependently (EC50 0.14 mg/ml; n = 3-19). 1 mg/ml eluate increased the {[}Ca2+](i) values reversibly from 82 +/- 12 to 1,462 +/- 370 nmol/l, and then they returned back to 100 16 nmol/l (n = 19). The eluate-induced increase of {[}Ca2+](i) consisted of an initial Ca2+ peak followed by a Ca2+ plateau which depended on the extracellular Ca2+ concentration. The eluate-induced increase of {[}Ca2+](i) was inhibited by the specific B-2 kinin receptor antagonist Hoe 140 in a concentration-dependent manner (IC50 2.47 nmol/l). In addition, prior repetitive application of bradykinin desensitized the effect of eluate on {[}Ca2+](i). A colonic epithelial cell line not reacting to bradykinin did not respond to eluate either (n = 6). Similar to FSGS eluates, the eluate preparations of both the systemic lupus patient and the healthy volunteer led to a biphasic, concentration-dependent {[}Ca2+](i) increase in poclocytes which again was inhibited by Hoe 140. Free kinins were detected in all eluate preparations. Conclusion: The procedure of antibody-based immunoadsorption leads to kinin in the eluate which elevates the {[}Ca2+](i) level of podocytes via B-2 kinin receptors. Copyright (C) 2002 S. Karger AG, Basel

    Density-functional study of Cu atoms, monolayers, and coadsorbates on polar ZnO surfaces

    Full text link
    The structure and electronic properties of single Cu atoms, copper monolayers and thin copper films on the polar oxygen and zinc terminated surfaces of ZnO are studied using periodic density-functional calculations. We find that the binding energy of Cu atoms sensitively depends on how charge neutrality of the polar surfaces is achieved. Bonding is very strong if the surfaces are stabilized by an electronic mechanism which leads to partially filled surface bands. As soon as the surface bands are filled (either by partial Cu coverage, by coadsorbates, or by the formation of defects), the binding energy decreases significantly. In this case, values very similar to those found for nonpolar surfaces and for copper on finite ZnO clusters are obtained. Possible implications of these observations concerning the growth mode of copper on polar ZnO surfaces and their importance in catalysis are discussed.Comment: 6 pages with 2 postscript figures embedded. Uses REVTEX and epsf macro

    Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene

    Full text link
    We have measured a strictly linear pi-plasmon dispersion along the axis of individualized single wall carbon nanotubes, which is completely different from plasmon dispersions of graphite or bundled single wall carbon nanotubes. Comparative ab initio studies on graphene based systems allow us to reproduce the different dispersions. This suggests that individualized nanotubes provide viable experimental access to collective electronic excitations of graphene, and it validates the use of graphene to understand electronic excitations of carbon nanotubes. In particular, the calculations reveal that local field effects (LFE) cause a mixing of electronic transitions, including the 'Dirac cone', resulting in the observed linear dispersion

    The analysis of facial beauty: an emerging area of research in pattern analysis

    Get PDF
    Much research presented recently supports the idea that the human perception of attractiveness is data-driven and largely irrespective of the perceiver. This suggests using pattern analysis techniques for beauty analysis. Several scientific papers on this subject are appearing in image processing, computer vision and pattern analysis contexts, or use techniques of these areas. In this paper, we will survey the recent studies on automatic analysis of facial beauty, and discuss research lines and practical application

    Inpatient and outpatient loop electrosurgery excision procedure for cervical intraepithelial neoplasia: a retrospective analysis

    Get PDF
    Purpose: To determine whether the outpatient loop electrosurgical excision procedure (LEEP) conization (out-LEEP) is as effective and safe as inpatient LEEP conization (in-LEEP) with regard to the complete removal of cervical dysplasia, recurrence-free survival and post-operative morbidity. Methods: 233 patients were included in this retrospective cohort study from January 2002 to December 2007. 181 had outpatient treatment and 52 inpatient treatment. We used Mann-Whitney U test, two-sided Fisher's exact test, Chi-square test, log rank test and Kaplan-Meier curve. Results: Incomplete excision was found in 16/52 (30.8%) cases in the inpatient group and 46/181 (25.4%) in the outpatient group (P=0.48). Six patients had post-operative complications: two cases of secondary haemorrhage in each group (in-LEEP 3.8%, out-LEEP 1.1%, P=0.22) and two cases of cervical stenosis amongst inpatients (3.8%, P=0.049). Alteration of specimen by thermal artifact were reported in 4/52 (7.7%) of in-LEEP cones and 10/181 (5.5%) of out-LEEP cones (P=0.52). Measurements of cones in both groups were comparable with a mean depth of 9.35mm (±5.5mm) and 8.4mm (±3.4mm), respectively. Conclusion: Our results suggest that efficacy and safety of ambulatory LEEP conization is comparable as in inpatient procedur

    Mitochondrial DNA mutations in renal cell carcinomas revealed no general impact on energy metabolism

    No full text
    Previously, renal cell carcinoma tissues were reported to display a marked reduction of components of the respiratory chain. To elucidate a possible relationship between tumourigenesis and alterations of oxidative phosphorylation, we screened for mutations of the mitochondrial DNA (mtDNA) in renal carcinoma tissues and patient-matched normal kidney cortex. Seven of the 15 samples investigated revealed at least one somatic heteroplasmic mutation as determined by denaturating HPLC analysis (DHPLC). No homoplasmic somatic mutations were observed. Actually, half of the mutations presented a level of heteroplasmy below 25%, which could be easily overlooked by automated sequence analysis. The somatic mutations included four known D-loop mutations, four so far unreported mutations in ribosomal genes, one synonymous change in the ND4 gene and four nonsynonymous base changes in the ND2, COI, ND5 and ND4L genes. One renal cell carcinoma tissue showed a somatic A3243G mutation, which is a known frequent cause of MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis, stroke-like episode) and specific compensatory alterations of enzyme activities of the respiratory chain in the tumour tissue. No difference between histopathology and clinical progression compared to the other tumour tissues was observed. In conclusion, the low abundance as well as the frequently observed low level of heteroplasmy of somatic mtDNA mutations indicates that the decreased aerobic energy capacity in tumour tissue seems to be mediated by a general nuclear regulated mechanism

    Effect of impurity substitution on band structure and mass renormalization of the correlated FeTe0.5_{0.5}Se0.5_{0.5} superconductor

    Get PDF
    Using angle-resolved photoemission spectroscopy (ARPES), we studied the effect of the impurity potential on the electronic structure of FeTe0.5_{0.5}Se0.5_{0.5} superconductor by substituting 10\% of Ni for Fe which leads to an electron doping of the system. We could resolve three hole pockets near the zone center and an electron pocket near the zone corner in the case of FeTe0.5_{0.5}Se0.5_{0.5}, whereas only two hole pockets near the zone center and an electron pocket near the zone corner are resolved in the case of Fe0.9_{0.9}Ni0.1_{0.1}Te0.5_{0.5}Se0.5_{0.5}, suggesting that the hole pocket having predominantly the xyxy orbital character is very sensitive to the impurity scattering. Upon electron doping, the size of the hole pockets decrease and the size of the electron pockets increase as compared to the host compound. However, the observed changes in the size of the electron and hole pockets are not consistent with the rigid-band model. Moreover, the effective mass of the hole pockets is reduced near the zone center and of the electron pockets is increased near the zone corner in the doped Fe0.9_{0.9}Ni0.1_{0.1}Te0.5_{0.5}Se0.5_{0.5} as compared to FeTe0.5_{0.5}Se0.5_{0.5}. We refer these observations to the changes of the spectral function due to the effect of the impurity potential of the dopants.Comment: 8 pages, 3 figure
    corecore