463 research outputs found

    Association between subclinical thyroid dysfunction and change in bone mineral density in prospective cohorts

    Get PDF
    Background Subclinical hyperthyroidism (SHyper) has been associated with increased risk of hip and other fractures, but the linking mechanisms remain unclear. Objective To investigate the association between subclinical thyroid dysfunction and bone loss. Methods Individual participant data analysis was performed after a systematic literature search in MEDLINE/EMBASE (1946–2016). Two reviewers independently screened and selected prospective cohorts providing baseline thyroid status and serial bone mineral density (BMD) measurements. We classified thyroid status as euthyroidism (thyroid-stimulating hormone [TSH] 0.45–4.49 mIU/L), SHyper (TSH < 0.45 mIU/L) and subclinical hypothyroidism (SHypo, TSH ≥ 4.50–19.99 mIU/L) both with normal free thyroxine levels. Our primary outcome was annualized percentage BMD change (%ΔBMD) from serial dual X-ray absorptiometry scans of the femoral neck, total hip and lumbar spine, obtained from multivariable regression in a random-effects two-step approach. Results Amongst 5458 individuals (median age 72 years, 49.1% women) from six prospective cohorts, 451 (8.3%) had SHypo and 284 (5.2%) had SHyper. During 36 569 person-years of follow-up, those with SHyper had a greater annual bone loss at the femoral neck versus euthyroidism: %ΔBMD = −0.18 (95% CI: −0.34, −0.02; I2 = 0%), with a nonstatistically significant pattern at the total hip: %ΔBMD = −0.14 (95% CI: −0.38, 0.10; I2 = 53%), but not at the lumbar spine: %ΔBMD = 0.03 (95% CI: −0.30, 0.36; I2 = 25%); especially participants with TSH < 0.10 mIU/L showed an increased bone loss in the femoral neck (%Δ BMD = −0.59; [95% CI: −0.99, −0.19]) and total hip region (%ΔBMD = −0.46 [95% CI: −1.05, −0.13]). In contrast, SHypo was not associated with bone loss at any site. Conclusion Amongst adults, SHyper was associated with increased femoral neck bone loss, potentially contributing to the increased fracture risk

    Investigating cooperation with robotic peers

    Get PDF
    We explored how people establish cooperation with robotic peers, by giving participants the chance to choose whether to cooperate or not with a more/less selfish robot, as well as a more or less interactive, in a more or less critical environment. We measured the participants' tendency to cooperate with the robot as well as their perception of anthropomorphism, trust and credibility through questionnaires. We found that cooperation in Human-Robot Interaction (HRI) follows the same rule of Human-Human Interaction (HHI), participants rewarded cooperation with cooperation, and punished selfishness with selfishness. We also discovered two specific robotic profiles capable of increasing cooperation, related to the payoff. A mute and non-interactive robot is preferred with a high payoff, while participants preferred a more human-behaving robot in conditions of low payoff. Taken together, these results suggest that proper cooperation in HRI is possible but is related to the complexity of the task

    Reconstruction versus conservative treatment after rupture of the anterior cruciate ligament: cost effectiveness analysis

    Get PDF
    BACKGROUND: The decision whether to treat conservatively or reconstruct surgically a torn anterior cruciate ligament (ACL) is an ongoing subject of debate. The high prevalence and associated public health burden of torn ACL has led to continuous efforts to determine the best therapeutic approach. A critical evaluation of benefits and expenditures of both treatment options as in a cost effectiveness analysis seems well-suited to provide valuable information for treating physicians and healthcare policymakers. METHODS: A literature review identified four of 7410 searched articles providing sufficient outcome probabilities for the two treatment options for modeling. A transformation key based on the expert opinions of 25 orthopedic surgeons was used to derive utilities from available evidence. The cost data for both treatment strategies were based on average figures compiled by Orthopaedic University Hospital Balgrist and reinforced by Swiss national statistics. A decision tree was constructed to derive the cost-effectiveness of each strategy, which was then tested for robustness using Monte Carlo simulation. RESULTS: Decision tree analysis revealed a cost effectiveness of 16,038 USD/0.78 QALY for ACL reconstruction and 15,466 USD/0.66 QALY for conservative treatment, implying an incremental cost effectiveness of 4,890 USD/QALY for ACL reconstruction. Sensitivity analysis of utilities did not change the trend. CONCLUSION: ACL reconstruction for reestablishment of knee stability seems cost effective in the Swiss setting based on currently available evidence. This, however, should be reinforced with randomized controlled trials comparing the two treatment strategies

    Shipping blood to a central laboratory in multicenter clinical trials: effect of ambient temperature on specimen temperature, and effects of temperature on mononuclear cell yield, viability and immunologic function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical trials of immunologic therapies provide opportunities to study the cellular and molecular effects of those therapies and may permit identification of biomarkers of response. When the trials are performed at multiple centers, transport and storage of clinical specimens become important variables that may affect lymphocyte viability and function in blood and tissue specimens. The effect of temperature during storage and shipment of peripheral blood on subsequent processing, recovery, and function of lymphocytes is understudied and represents the focus of this study.</p> <p>Methods</p> <p>Peripheral blood samples (n = 285) from patients enrolled in 2 clinical trials of a melanoma vaccine were shipped from clinical centers 250 or 1100 miles to a central laboratory at the sponsoring institution. The yield of peripheral blood mononuclear cells (PBMC) collected before and after cryostorage was correlated with temperatures encountered during shipment. Also, to simulate shipping of whole blood, heparinized blood from healthy donors was collected and stored at 15°C, 22°C, 30°C, or 40°C, for varied intervals before isolation of PBMC. Specimen integrity was assessed by measures of yield, recovery, viability, and function of isolated lymphocytes. Several packaging systems were also evaluated during simulated shipping for the ability to maintain the internal temperature in adverse temperatures over time.</p> <p>Results</p> <p>Blood specimen containers experienced temperatures during shipment ranging from -1 to 35°C. Exposure to temperatures above room temperature (22°C) resulted in greater yields of PBMC. Reduced cell recovery following cryo-preservation as well as decreased viability and immune function were observed in specimens exposed to 15°C or 40°C for greater than 8 hours when compared to storage at 22°C. There was a trend toward improved preservation of blood specimen integrity stored at 30°C prior to processing for all time points tested. Internal temperatures of blood shipping containers were maintained longer in an acceptable range when warm packs were included.</p> <p>Conclusions</p> <p>Blood packages shipped overnight by commercial carrier may encounter extreme seasonal temperatures. Therefore, considerations in the design of shipping containers should include protecting against extreme ambient temperature deviations and maintaining specimen temperature above 22°C or preferably near 30°C.</p

    Mesodynamics in the SARS nucleocapsid measured by NMR field cycling

    Get PDF
    Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R1 at low fields with the sensitivity and resolution of a high-field magnet. These data, together with high-field relaxation and heteronuclear NOE, provide evidence for correlated rigid-body motions of the entire β-hairpin, and corresponding motions of adjacent loops with a time constant of 0.8 ns (mesodynamics). MD simulations substantiate these findings and provide direct verification of the time scale and collective nature of these motions

    Differential Regulation of the PGC Family of Genes in a Mouse Model of Staphylococcus aureus Sepsis

    Get PDF
    The PGC family of transcriptional co-activators (PGC-1α [Ppargc1a], PGC-1β [Ppargc1b], and PRC [Pprc]) coordinates the upregulation of mitochondrial biogenesis, and Ppargc1a is known to be activated in response to mitochondrial damage in sepsis. Therefore, we postulated that the PGC family is regulated by the innate immune system. We investigated whether mitochondrial biogenesis and PGC gene expression are disrupted in an established model of Staphylococcus aureus sepsis both in mice with impaired innate immune function (TLR2−/− and TLR4−/−) and in wild-type controls. We found an early up-regulation of Ppargc1a and Ppargc1b post-infection (at 6 h) in WT mice, but the expression of both genes was concordantly dysregulated in TLR2−/− mice (no increase at 6 h) and in TLR4−/− mice (amplified at 6 h). However, the third family member, PRC, was regulated differently, and its expression increased significantly at 24 h in all three mouse strains (WT, TLR2−/−, and TLR4−/−). In silico analyses showed that Ppargc1a and Ppargc1b share binding sites for microRNA mmu-mir-202-3p. Thus, miRNA-mediated post-transcriptional mRNA degradation could account for the failure to increase the expression of both genes in TLR2−/− mice. The expression of mmu-mir-202-3p was measured by real-time PCR and found to be significantly increased in TLR2−/− but not in WT or TLR4−/− mice. In addition, it was found that mir-202-3p functionally decreases Ppargc1a mRNA in vitro. Thus, both innate immune signaling through the TLRs and mir-202-3p-mediated mRNA degradation are implicated in the co-regulation of Ppargc1a and Ppargc1b during inflammation. Moreover, the identification of mir-202-3p as a potential factor for Ppargc1a and Ppargc1b repression in acute inflammation may open new avenues for mitochondrial research and, potentially, therapy

    Rapid-acting antidepressants and the regulation of TrkB neurotrophic signalling-Insights from ketamine, nitrous oxide, seizures and anaesthesia

    Get PDF
    Increased glutamatergic neurotransmission and synaptic plasticity in the prefrontal cortex have been associated with the rapid antidepressant effects of ketamine. Activation of BDNF (brain-derived neurotrophic factor) receptor TrkB is considered a key molecular event for antidepressant-induced functional and structural synaptic plasticity. Several mechanisms have been proposed to underlie ketamine's effects on TrkB, but much remains unclear. Notably, preliminary studies suggest that besides ketamine, nitrous oxide (N2O) can rapidly alleviate depressive symptoms. We have shown nitrous oxide to evoke TrkB signalling preferentially after the acute pharmacological effects have dissipated (ie after receptor disengagement), when slow delta frequency electroencephalogram (EEG) activity is up-regulated. Our findings also demonstrate that various anaesthetics and sedatives activate TrkB signalling, further highlighting the complex mechanisms underlying TrkB activation. We hypothesize that rapid-acting antidepressants share the ability to regulate TrkB signalling during homeostatically evoked slow-wave activity and that this mechanism is important for sustained antidepressant effects. Our observations urge the examination of rapid and sustained antidepressant effects beyond conventional receptor pharmacology by focusing on brain physiology and temporally distributed signalling patterns spanning both wake and sleep. Potential implications of this approach for the improvement of current therapies and discovery of novel antidepressants are discussed.Peer reviewe

    Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression

    Get PDF
    The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNβ and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS
    corecore