295 research outputs found

    Nanoparticles and Taylor dispersion as a linear time-invariant system

    Get PDF
    The physical principles underpinning Taylor dispersion offer a high dynamic range to characterize the hydrodynamic radius of particles. While Taylor dispersion grants the ability to measure radius within nearly 5 orders of magnitude, the detection of particles is never instantaneous. It requires a finite sample volume, a finite detector area, and a finite detection time for measuring absorbance. First we show that these practical requirements bias the analysis when the self-diffusion coefficient of particles is high, which is typically the case of small nanoparticles. Second we show that the accuracy of the technique may be recovered by treating Taylor dispersion as a linear time- invariant system, which we prove by analyzing the Taylor dispersion spectra of two iron-oxide nanoparticles measured under identical experimental conditions. The consequence is that such treatment may be necessary whenever Taylor dispersion analysis is not optimized for a given size but dedicated to characterize broad groups of particles of varying size and material

    Nanofibers: Friend or Foe?

    Get PDF
    Since the early 1990s nanofibers, particularly those of a carbonaceous content [1] have received heightened interest due to their advantageous physico-chemical characteristics (e.g., high strength, stiffness, semi-conductor, increased thermal conductivity and one of the highest Young’s modulus [2]).[...

    Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms

    Get PDF
    Diesel engine emissions are among the most prevalent anthropogenic pollutants worldwide, and with the growing popularity of diesel-fueled engines in the private transportation sector, they are becoming increasingly widespread in densely populated urban regions. However, a large number of toxicological studies clearly show that diesel engine emissions profoundly affect human health. Thus the interest in the molecular and cellular mechanisms underlying these effects is large, especially concerning the nature of the components of diesel exhaust responsible for the effects and how they could be eliminated from the exhaust. This review describes the fundamental properties of diesel exhaust as well as the human respiratory tract and concludes that adverse health effects of diesel exhaust not only emerge from its chemical composition, but also from the interplay between its physical properties, the physiological and cellular properties, and function of the human respiratory tract. Furthermore, the primary molecular and cellular mechanisms triggered by diesel exhaust exposure, as well as the fundamentals of the methods for toxicological testing of diesel exhaust toxicity, are described. The key aspects of adverse effects induced by diesel exhaust exposure described herein will be important for regulators to support or ban certain technologies or to legitimate incentives for the development of promising new technologies such as catalytic diesel particle filters

    Assessing meso- and microplastic pollution in the Ligurian and Tyrrhenian Seas

    Get PDF
    As the production of plastic products continues to increase, determining the fate of plastic waste in the environment is of high importance. Densely populated areas, such as Mediterranean coastlines, represent locations of high pollution risk for surrounding environments. Thus, this study aims to assess the abundance, size, and composition of floating meso- and microplastics collected during four weeks in 2018 in the Ligurian and Tyrrhenian Seas. The results show average meso- and microplastic particle concentrations of 28,376 ± 28,917 particles km−2, and an average mass of 268.61 ± 421.18 g km−2. The particle shape ratio was 65% fragments, 19% films, 10% lines, 4% foams, and 2% pellets. Microplastic particles comprised 65% of the sample. Analysis with attenuated total reflection Fourier transform infrared spectroscopy showed predominant polymer types included polyethylene, polypropylene, polystyrene, and polyamide. These data are an important starting point for long-term monitoring of plastic pollution levels within this region

    Nanomaterials and the human lung: what is known and what must be deciphered to realise their potential advantages?

    Get PDF
    Due to the constant expansion within the nanotechnology industry in the last decade, nanomaterials are omnipresent in society today. Nanotechnology-based products have numerous different applications ranging from electronic (e.g., advanced memory chips) to industrial (e.g., coatings or composites) to biomedical (e.g., drug delivery systems, diagnostics). Although these new nanomaterials can be found in many “everyday” products, their effects on the human body have still to be investigated in order to identify not only their risk, but also their potential benefits towards human health. Since the lung is commonly thought to be the main portal of entry into the human body for nanomaterials released within the environment, this review will attempt to summarise the current knowledge and understanding of how nanomaterials interact with the respiratory tract. Furthermore, the advantages and disadvantages of different experimental model systems that are commonly used to study this exposure route to the human body will be discussed

    A rapid screening method to evaluate the impact of nanoparticles on macrophages

    Get PDF
    Nanotechnology is an emerging and highly promising field to develop new approaches for biomedical applications. There is however at present an unmet need for a rapid and universal method to screen nanoparticles (NP) for immunocompatibility at early stages of their development. Indeed, although many types of highly diverse NP are currently under investigation, their interaction with immune cells remains fairly unpredictable. Macrophages which are professional phagocytic cells are believed to be among the first cell types that take up NP, mediating inflammation and thus immunological responses. The present work describes a highly reproducible screening method to study the NP interaction with macrophages. Three essential questions are answered in parallel, in a single multiwell plate: Are the NP taken up by macrophages? Do the NP cause macrophage cell death? Do the NP induce inflammatory reactions? This assay is proposed as a standardized screening protocol to obtain a rapid overview of the impact of different types of NP on macrophages. Due to high reproducibility, this method also allows quality control assessment for such aspects as immune-activating contaminants and batch-to-batch variability

    Management of nanomaterials safety in research environment

    Get PDF
    Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3 - highest hazard to Nano1 - lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting innovation and discoveries by ensuring them a safe environment even in the case of very novel products. The proposed measures are not considered as constraints but as a support to their research. This methodology is being implemented at the Ecole Polytechnique de Lausanne in over 100 research labs dealing with nanomaterials. It is our opinion that it would be useful to other research and academia institutions as well

    In vitro approaches to assess the hazard of nanomaterials

    Get PDF
    The rapid development of engineered nanomaterials demands for a fast and reliable assessment of their health hazard potential. A plethora of experimental approaches have been developed and are widely employed in conventional toxicological approaches. However, the specific properties of nanomaterials such as smaller size but larger surface area, and high catalytic reactivity and distinctive optical properties compared to their respective bulk entities, often disable a straightforward use of established in vitro approaches. Herein, we provide an overview of the current state-of the art nanomaterial hazard assessment strategies using in vitro approaches. This perspective has been developed based on a thorough review of over 200 studies employing such methods to assess the biological response upon exposure to a diverse array of nanomaterials. The majority of the studies under review has been, but not limited to, engaged in the European 7th Framework Programme for Research and Technological Development and published in the last five years. Based on the most widely used methods and/or the most relevant biological endpoints, we have provided some general recommendations on the use of the selected approaches which would the most closely mimic realistic exposure scenarios as well as enabling to yield fast, reliable and reproducible data on the nanomaterial-cell response in vitro. In addition, the applicability of the approaches to translate in vitro outcomes to leverage those of in vivo studies has been proposed. It is finally suggested that an improved comprehension of the approaches with its limitations used for nanomaterials' hazard assessment in vitro will improve the interpretation of the existing nanotoxicological data as well as underline the basic principles in understanding interactions of engineered nanomaterials at a cellular level; this all is imperative for their safe-by- design strategies, and should also enable subsequent regulatory approvals
    corecore