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ABSTRACT: The physical principles underpinning Taylor dispersion offer
a high dynamic range to characterize the hydrodynamic radius of particles.
While Taylor dispersion grants the ability to measure radius within nearly 5
orders of magnitude, the detection of particles is never instantaneous. It
requires a finite sample volume, a finite detector area, and a finite detection
time for measuring absorbance. First we show that these practical
requirements bias the analysis when the self-diffusion coefficient of particles
is high, which is typically the case of small nanoparticles. Second we show
that the accuracy of the technique may be recovered by treating Taylor
dispersion as a linear time-invariant system, which we prove by analyzing the
Taylor dispersion spectra of two iron-oxide nanoparticles measured under
identical experimental conditions. The consequence is that such treatment may be necessary whenever Taylor dispersion
analysis is not optimized for a given size but dedicated to characterize broad groups of particles of varying size and material.

Characterizing the size of particles dispersed or suspended
in viscoelastic media is fundamental in many fields of

academic research and also has strong implication for industrial
manufacturing processes. Indeed, size defines several phys-
icochemical properties, including but not limited to catalytic
reactivity, dissolution rate, appearance, and stability in, e.g.,
inks and paints, delivery of drug formulations, and texture and
mouthfeel in food science.
The traditional experimental techniques dedicated to

particle size analysis are transmission and scanning electron
microscopy, dynamic light scattering, particle tracking analysis,
small-angle X-ray, and neutron scattering. The first attempt of
adopting Taylor dispersion1−3 to characterize colloidal
particles was successful,4 yet the technique was not attracting
immediate attention from the communities interested in
particles. Fortunately, the technique now appears to be
experiencing a renaissance, and thus, currently there is an
active interest in implementing the technique for particle
systems, including organic, inorganic, metallic, and nonmetallic
particles.5−12

Taylor dispersion is the combination of three independent
phenomena: optical extinction, translational self-diffusion, and
sheer-enhanced dispersion of particles subjected to a steady
laminar flow in a microfluidic channel, usually driven by a
pressure gradient in a cylindrical capillary tube. The velocity
profile of the laminar flow disperses the homogeneous band of
the injected particles, which creates a concentration and
induces a spontaneous net transport of particles via transla-
tional self-diffusion. As a result, the band broadens.7 The rate
of band-broadening is defined by the velocity profile and
translational diffusion coefficient of the particles. The hydro-

dynamic radius is determined from the self-diffusion coefficient
(D) via the Stokes−Einstein equation (D = kBT/6πηr),

13−15

and D is determined through analyzing the so-called
“taylorgram”, which is the temporal record of the optical
absorbance of the particle band at a given distance from the
injection point. Given the Lambert−Beer law and a linear
detector response, the taylorgram of uniform particles of
hydrodynamic radius r resulting from an ideal experiment,
where the injected sample band and detection volumes are
infinitely thin, is written as1−3

= δ− −A r t t a t t( , ; ) / e t t rt
0 0

( ) /0
2

(1)

where a is the amplitude, δ = πηY
k T2

2

B
, Y the capillary radius, η the

viscosity of the fluid, T the temperature, kB the Boltzmann
constant, and t0 = x/v, the so-called residence time defined by
the distance between detection and injection points (x = xdet −
xinj) and the mean velocity of the flow (v) averaged over the
cross section of the capillary. Equation 1 is essentially a time-
dependent Gaussian function, whose width increases with the
residence time and particle size. Therefore, by determining the
residence time and the width of the absorbance profile, one can
determine the hydrodynamic radius. Classical Taylor dis-
persion requires that (i) the Reynolds number (2ρYv/η, where
ρ is the density of the fluid) is small, (ii) the rate of axial
diffusion of the particles in the tubes is small compared to
convection, that is, the inequality 69 ≤ vY/D (Peclet number)
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is satisfied, and (iii) the residence time is much larger than the
characteristic (dimensionless) diffusion time on a distance
equal to the capillary radius, that is, the inequality 1.4 ≤ tD =
Dt0/Y

2 is satisfied. Cottet et al. showed that these conditions
could be considerably eased if the user tolerates the
consequent small relative error.16

It has been recognized early that even if the vital
experimental conditions are fulfilled, the profile given by eq
1, where the sample and detection volumes are described by
Dirac delta functions, is in fact never truly attained in real
experiments. The exact theoretical profile may be closely
approximated by a careful instrument design where systematic
errors may be treated as very small perturbations. In these
cases, corrections may be applied to adjust the experimentally
derived values, such as residence time and profile variance.17 If
the range of diffusion coefficients is known a priori, to optimize
the experiment is straightforward. In other words, for a given
range of particle sizes, one may always find a valid combination
of operation parameters that ensures that the analysis is of high
quality.16,18

While careful instrument design is the essence of any
analytical technique, the practice of Taylor dispersion aims to
achieve a status similar to that of dynamic light scattering, in a
sense that one single instrument and the related analysis
should be able to address a wide range of particle sizes without
the need of calibrating and validating new operation
parameters from one particle system to another, which is not
only sluggish but promotes fragile traceability. Indeed, the
capillary diameter, the distance, and the size of the capillary
window are not varied routinely but changed only when the
capillary is replaced. Routinely adjustable parameters are
driving pressure, ramp time, and injected sample volume.
This is crucial when considering that weakly absorbing (or
scattering7) suspensions require relatively large sample and
detection volume that cannot be treated as small errors.17

In order to unfold the high dynamic range, inherent in
Taylor dispersion, with one single instrument and a fixed set of
operational parameters, we reconstruct eq 1 for arbitrary large
perturbations. Our basis is given by recognizing that Taylor
dispersion may be treated as a linear time-invariant system,
where the impulse response function has essential importance
in the description of the system (Figure 1).
Since Taylor dispersion is a linear time-invariant system, eq

1 describes exactly the impulse-response function of an ideal
Taylor dispersion setup.19 The behavior of a linear time-
invariant system is described completely by its impulse

response, and hence the output to any arbitrary input can be
calculated. The linearity is ensured by the characteristics of the
differential equation governing the dynamics of the particle
concentration.1,20 Linear systems have the property that the
input is linearly related to the output. Changing the input in a
linear way will change the output in the same linear way.
Accordingly, linear combinations of distinct inputs will
produce linear combinations of the related outputs. Time-
invariant systems have the property that the form of the output
for a given input does not depend on when that input was
applied (Figure 2a,b). Furthermore, Taylor dispersion is
integrative in the output (Figure 2c,d).
This is the approach we will adopt in this letter to describe

eq 1 in experimentally relevant situations. The finite volume of
the analyte can be accounted for by a finite injection time Δt

Figure 1. Idealized view of Taylor dispersion experiments: injected
particles, while traveling the distance between injection and detection
points in t0 residence time, are dispersed by the interplay between
pressure-driven laminar flow and translational diffusion. At the
detection point, their optical absorbance is determined as a function
of time. If (i) the width of the injected sample-band is infinitely
narrow and (ii) the absorbance is determined on an infinitely narrow
cross section of the flow, the absorbance is described by eq 1.

Figure 2. Taylor dispersion experiments as a linear time-invariant
system when the absorbance is measured on an infinitely narrow cross
section (Dirac delta function) of the flow. (a) The system is time-
invariant because a given time-delay on the input results in the same
time-delay on the output. Accordingly, the output of two Dirac delta
impulses separated by some Δt time will be two signals (eq 1) of
exactly the same width and shape separated by Δt time. (b) If the
input, i.e., the injection, is stable and continuous during Δt time (i.e.,
a top-hat function), the output will be a broadened signal, which is
given by the convolution of eq 1 with the input signal. (c) However,
even if the width of the injected sample-band is infinitely narrow, the
absorbance is always determined over a finite distance defined by the
length of the detector’s sensitive area. Accordingly, along the length of
the detector, the residence times are different, and the width of the
signals increase with residence time. (d) Therefore, in any real
experiment, the output measured is a cumulative signal, where the
overall time difference δt is defined by the detector length and flow
velocity.
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(Figure 2b), and the finite volume of the detected analyte
reaching the detector window can be accounted for by a finite
δt time (Figure 2d). Following the linear properties, we express
these perturbations by a double integral:

∫ ∫
δ

δ

Δ

=
Δ δ

δ

−Δ −

+
A r t t t t

t t
A r x y x y

( , , , ; )
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t t
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/2

0

0

(2)

The result of the integration, although being lengthy, can be
readily obtained in a close form:
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Equation 3 is adequate for interpreting Taylor dispersion, of
either uniform particles or particles of moderate polydispersity,
recorded with arbitrary injection and detection volumes and,
thus, is not limited to small perturbations. By using eq 3, it is
straightforward to show that the residence time (t0) is
increasing with Δt/2 and the variance of the taylorgram (σ2)
is increasing with (δt2 + Δt2)/12. Accordingly, the relative
accuracies regarding the residence time and variance are Δt/2t0
and (δt2 + Δt2)/(6t0δr), respectively. Since the bias is
proportional to the square of the injection and detection
times (i.e., volumes) and inversely proportional to residence
time and particles size, the accuracy is decreasing with particle
size at a given set of operational parameters. To deal with these
systematic inaccuracies, it is most common to implement two

detection points, where one determined two variances (σ2
2,

σ1
2) and residence times (t2, t1). By using the differences in

variances and residence times determined from the recorded
taylorgrams:

πη
σ σ= −

−
r

k T
Y t t

4 B
2

2
2

1
2

2 1 (4)

eq 4 aims at minimizing the bias resulting from a non-
negligible pressure ramp and injection.21,22 However, this
approach is inefficient when systematic errors owing to the
practice of instrumentation are beyond small perturbations,
which to the best of our knowledge, has remained untreated
until now. To illustrate, let us consider the trivial case when the
windows sizes are not exactly the same at both detection
points. To impart resistance and mechanical strength,
capillaries are coated with a protective polymer layer. This
layer strongly absorbs in the UV−vis range and must be
removed around the detection points. This is a very delicate
step, with limited control over the exactness of the area.
Accordingly, the biases will not be equal, and they will not
cancel out in eq 4. While this might not stand out for larger
particles and longer residence times, the characterization of
small particles may suffer from this nonrecognized inaccuracy.
To demonstrate the benefit of using eq 3 instead of eq 1, we

synthesized two batches of superparamagnetic iron oxide
nanoparticles (SPIONs) and characterized their aqueous
dispersions stabilized by citric acid (CA). The image analyses
of TEM micrographs (Figure 3) show narrow size distributions
with a radii of 6.0 ± 0.7 nm (mean ± STD) and 9.9 ± 0.6 nm,
respectively.

To determine their diffusion coefficients and the corre-
sponding hydrodynamic radii via Taylor dispersion, we
recorded taylorgrams at two detection windows. Figure 4a
shows two sets of representative data. The residence times
were between 600 and 700 and 900−1000 s, respectively, and
the ramping time was less than 5 s. As expected, the
taylorgrams showed bimodality, where the narrower absorb-
ance peak is attributed to the CA, and the broader peak is
attributed to the SPIONs. Consequently, we, respectively,
fitted the bimodal combinations of eq 1 and eq 3 to the
taylorgrams (Figure 4b,c). The variances and residence times
obtained via the fits were used to determine the particle radius
via eq 4 and the Stokes−Einstein relationship, and Figure 5
shows the final results of the analyses.

Figure 3. TEM micrographs of the two citrate-stabilized SPIONs and
the resulting distributions of the image analyses. The scale bar marks
50 nm.
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Given the small dimensions and the nonzero imaginary part
of the refractive index of the SPIONs, their optical extinction is
dominated by absorption, and thus, the hydrodynamic radius
measured by TDA is a volume-weighted average expressed by
the raw moments of the size distribution: ⟨r4⟩/⟨r3⟩.7,9 The
triangular bracket denote ensemble average, which is rapidly
estimated from the TEM distribution. Accordingly, the radius

determined by Taylor dispersion is expected to be around 6.2
and 10.0 nm for the smaller and large SPIONs, respectively.
Regarding the smaller SPIONs, the 0.99 confidence intervals of
the radius determined via two-window measurements are,
respectively, 5.5−6.4 nm when residence times and variances
are determined via eq 3 and 3.9−5.3 nm when residence times
and variances are determined via eq 1. The latter is entirely
inconsistent with the value expected from the TEM analysis.
Regarding the larger SPIONs, the 0.99 confidence intervals of
the radius determined via two-window measurements are,
respectively, 6.3−12.6 nm and 7.4−11.2 nm. Both intervals are
consistent with the value expected from the TEM analysis.
Therefore, as anticipated, the accuracy of an instrument with
given operation parameters may be strongly dependent on the
size of the particle.
To summarize, by treating Taylor dispersion as a linear time-

invariant system, we extended the validity to larger injection
and detection volumes increasing the quality of detection. This
approach is new, promotes accuracy, and is dedicated to
general-purpose instruments, where, while the operational
parameters are not optimized for a given specific size, the
versatility in sizing capacity is of high interest.

■ MATERIALS AND METHODS
The SPIONs were synthesized by thermal decomposition.23,24

Iron(III) chloride hexahydrate of ACS Reagent grade were
purchased from Sigma-Aldrich, Merck KGaA, and Acros
Organics. Sodium oleate (>97%) and tri-n-octylamine
(>97%) were supplied by TCI Chemicals. Absolute ethanol
(100%) and n-hexane (98%) of ACS Reagent grade were
purchased from VWR Chemicals. Sigma-Aldrich supplied oleic
acid (90%, technical grade), 1,2-dichlorobenzene (DCB, 99%)
and n,n-dimethylformamide (DMF, ≥ 99.8%). Diethyl ether
(ACS Reagent grade) and ammonium hydroxide solution
(25%) were obtained from Honeywell Burdick & Jackson.
Acetone (technical grade) was supplied by Reactolab SA. All
chemicals were used as received. Each aqueous solution was
prepared with deionized water received from a Milli-Q system
(resistivity = 18.2 MΩ cm, Millipore AG). To transfer the
SPIONs in aqueous solutions, a ligand exchange with citric
acid (CA) was performed.25 Colloidal stability was ensured by
adding an excess of unbound CA (60 mg/mL) into the
dispersions and subsequent adjustment to pH 7−8.26 The CA
(Sigma-Aldrich, ACS reagent, ≥99.5%) was dissolved in Milli-
Q water to obtain a 60 mg/mL solution.
For transmission electron microscopy (TEM), diluted

samples were dropcasted onto 300 mesh carbon membrane-
coated copper grids following a procedure described else-
where.27 TEM experiments were carried out on a FEI Tecnai
Spirit operating at a voltage of 120 kV and equipped with a
side-mounted Veleta CCD camera (Olympus). The core
diameters of the nanoparticles were determined using an
automatized size distribution analysis macro in ImageJ
(v1.50i).
Taylor dispersion spectra were collected by a capillary

electrophoresis injection system (Prince 560 CE Autosampler,
Prince Technologies B.V.) using a fused silica capillary (74.5
μm inner diameter, Polymicro Technologies, Phoenix, AZ) at
constant temperature of 25 °C. The running buffer was Milli-
Q-water. Analytes with a volume of approximately 112 nL were
injected for 12 s at 200 mbar (ramp time, 4.8 s). The pressure
of 90 mbar (ramp time, 3 s) drove the samples through the
capillary with a mean velocity of around 1 mm/s. In our

Figure 4. (a) Two sets of taylorgrams of the smaller SPIONs shown
in Figure 3 (on the left). The repeatability is excellent, and thus, the
taylorgrams are shifted vertically for the sake of visibility. The
taylorgrams show bimodality, where the narrower absorbance peak is
attributed to the CA, and the broader peak is attributed to the
SPIONs. (b) The best fit of eq 1 is drawn in dashed orange, and the
best fit of eq 3 is drawn in blue. The light blue curve shows the ideal
experimental taylorgram corresponding to infinitely small volumes,
drawn via the best fit eq 3. (c) The decomposition of the best bimodal
fits of eq 1 (dashed orange) and eq 3 (blue).

Figure 5. Residence times and variances obtained via eqs 1 and 3 (in
orange and blue, respectively) for the (a) smaller and (b) larger
SPIONs. To compare the slopes determined via eq 4, the blue line is
shifted near to the orange line. The small yet relevant deviation in the
slope in the case of the small SPIONs clearly shows the result of bias
originating from eq 1.

4

ht
tp

://
do

c.
re

ro
.c

h



experiments, the duration of the pressure ramp was negligible
compared to the residence times, and accordingly we did not
need to apply any correction for this small perturbation.21 The
full length of the capillary was 145.5 cm, equipped with two
detection windows with a width of 1 cm each. The distance to
the first and second window was 72.5 and 104.5 cm,
respectively. Absorbance was recorded by an ActiPix D100
UV−vis area imaging detector (Paraytec, York, U.K., 20 Hz
sampling rate) using a band-pass filter (520 nm center
wavelength, 10 nm fwhm) coupled with a neutral density
filter (10% transmission, Edmund Optics, York, U.K.). The
detector corrects the intensity values for dark current, controls
the intensity of illumination, and performs the background
measurement on the respective running buffer before each run.
The extinction of the particles is expected to be collected in the
linear range of the detector throughout the measurements, and
the resulting absorbance is determined by taking into account
variations in the illumination, solvent backgrounds, and dark
current. To analyze the taylorgrams, routines were coded by
using Mathematica (version 11.3, Wolfram Language, Wolfram
Research, Inc., Champaign, IL). To fit our model against the
experimental data, we used an unconstrained nonlinear model
fit. The details along with a complete set of results are
presented in the Supporting Information.
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