230 research outputs found

    Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires

    Full text link
    Recent studies have shown that material structures, which lack structural inversion symmetry and have high spin-orbit coupling can exhibit chiral magnetic textures and skyrmions which could be a key component for next generation storage devices. The Dzyaloshinskii-Moriya Interaction (DMI) that stabilizes skyrmions is an anti-symmetric exchange interaction favoring non-collinear orientation of neighboring spins. It has been shown that material systems with high DMI can lead to very efficient domain wall and skyrmion motion by spin-orbit torques. To engineer such devices, it is important to quantify the DMI for a given material system. Here we extract the DMI at the Heavy Metal (HM) /Ferromagnet (FM) interface using two complementary measurement schemes namely asymmetric domain wall motion and the magnetic stripe annihilation. By using the two different measurement schemes, we find for W(5 nm)/Co20Fe60B20(0.6 nm)/MgO(2 nm) the DMI to be 0.68 +/- 0.05 mJ/m2 and 0.73 +/- 0.5 mJ/m2, respectively. Furthermore, we show that this DMI stabilizes skyrmions at room temperature and that there is a strong dependence of the DMI on the relative composition of the CoFeB alloy. Finally we optimize the layers and the interfaces using different growth conditions and demonstrate that a higher deposition rate leads to a more uniform film with reduced pinning and skyrmions that can be manipulated by Spin-Orbit Torques

    Dynamic imaging of the delay- and tilt-free motion of NĂ©el domain walls in perpendicularly magnetized superlattices

    Get PDF
    We report on the time-resolved investigation of current- and field-induced domain wall motion in the flow regime in perpendicularly magnetized microwires exhibiting anti-symmetric exchange interaction by means of scanning transmission x-ray microscopy using a time step of 200 ps. The sub-ns time step of the dynamical images allowed us to observe the absence of incubation times for the motion of the domain wall within an uncertainty of 200 ps, together with indications for a negligible inertia of the domain wall. Furthermore, we observed that, for short current and magnetic field pulses, the magnetic domain walls do not exhibit a tilting during its motion, providing a mechanism for the fast, tilt-free, current-induced motion of magnetic domain walls

    Time-resolved visualization of the magnetization canting induced by field-like spin-orbit torques

    Get PDF
    We report on the use of time-resolved scanning transmission x-ray microscopy imaging for the visualization of the dynamical canting of the magnetization induced by field-like spin–orbit torques in a perpendicularly magnetized microwire. In particular, we show how the contributions to the dynamical canting of the magnetization arising from the field-like spin–orbit torque can be separated from the heating-induced effects on the magnetization of the microwire. This method will allow for the imaging of the dynamical effects of spin–orbit torques in device-like structures and buried layers. Part of this work was performed at the Surface Interface Microscopy (SIM - X11MA) beamline of the Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland. The research leading to these results received funding from the European Community's Seventh Framework Programme (No. FP7/2007-2013) under Grant Agreement No. 290605 (PSI-FELLOW/COFUND), the Swiss National Science Foundation under Grant Agreement No. 172517, and the EMPIR Programme (Grant No. 17FUN08TOPS) co-financed by the participating states, and from the European Union's Horizon 2020 Research and Innovation Programme. ML acknowledges funding received from the European Union's Horizon 2020 Research and Innovation Programme under Marie-Sklodowska Curie Grant Agreement No. 701647

    Current-induced dynamical tilting of chiral domain walls in curved microwires

    Get PDF
    We report on the investigation of current-induced domain wall motion of NĂ©el domain walls in perpendicularly magnetized microwires with curved geometries in the flow regime. The investigation was performed by time-resolved scanning transmission x-ray microscopy. In particular, we studied the dynamical tilting of the NĂ©el domain walls, observing that an asymmetric behavior in the domain wall tilt appears upon an inversion of the polarity of the current pulse driving the motion, an effect not predicted by state-of-the-art theories and micromagnetic modeling

    Pinning and hysteresis in the field dependent diameter evolution of skyrmions in Pt/Co/Ir superlattice stacks

    Get PDF
    We have imaged N\'eel skyrmion bubbles in perpendicularly magnetised polycrystalline multilayers patterned into 1 \mu m diameter dots, using scanning transmission x-ray microscopy. The skyrmion bubbles can be nucleated by the application of an external magnetic field and are stable at zero field with a diameter of 260 nm. Applying an out of plane field that opposes the magnetisation of the skyrmion bubble core moment applies pressure to the bubble and gradually compresses it to a diameter of approximately 100 nm. On removing the field the skyrmion bubble returns to its original diameter via a hysteretic pathway where most of the expansion occurs in a single abrupt step. This contradicts analytical models of homogeneous materials in which the skyrmion compression and expansion are reversible. Micromagnetic simulations incorporating disorder can explain this behaviour using an effective thickness modulation between 10 nm grains

    Risk Management in Magnetic Resonance: Failure Mode, Effects, and Criticality Analysis

    Get PDF
    The aim of the study was to perform a risk management procedure in "Magnetic Resonance Examination" process in order to identify the critical phases and sources of radiological errors and to identify potential improvement projects including procedures, tests, and checks to reduce the error occurrence risk. In this study we used the proactive analysis "Failure Mode Effects Criticality Analysis," a qualitative and quantitative risk management procedure; has calculated Priority Risk Index (PRI) for each activity of the process; have identified, on the PRI basis, the most critical activities and, for them, have defined improvement projects; and have recalculated the PRI after implementation of improvement projects for each activity. Time stop and audits are performed in order to control the new procedures. The results showed that the most critical tasks of "Magnetic Resonance Examination" process were the reception of the patient, the patient schedule drafting, the closing examination, and the organization of activities. Four improvement projects have been defined and executed. PRI evaluation after improvement projects implementation has shown that the risk decreased significantly following the implementation of procedures and controls defined in improvement projects, resulting in a reduction of the PRI between 43% and 100%

    Deterministic Field-Free Skyrmion Nucleation at a Nanoengineered Injector Device

    Get PDF
    Magnetic skyrmions are topological solitons promising for applications as encoders for digital information. A number of different skyrmion-based memory devices have been recently proposed. In order to demonstrate a viable skyrmion-based memory device, it is necessary to reliably and reproducibly nucleate, displace, detect, and delete the magnetic skyrmions, possibly in the absence of external applied magnetic fields, which would needlessly complicate the device design. While the skyrmion displacement and detection have both been thoroughly investigated, much less attention has been dedicated to the study of the skyrmion nucleation process and its sub-nanosecond dynamics. In this study, we investigate the nucleation of magnetic skyrmions from a dedicated nanoengineered injector, demonstrating the reliable magnetic skyrmion nucleation at the remnant state. The sub-nanosecond dynamics of the skyrmion nucleation process were also investigated, allowing us to shine light on the physical processes driving the nucleation
    • …
    corecore