3 research outputs found

    Severity of current depression and remission status are associated with structural connectome alterations in major depressive disorder

    Get PDF
    Major depressive disorder (MDD) is associated to affected brain wiring. Little is known whether these changes are stable over time and hence might represent a biological predisposition, or whether these are state markers of current disease severity and recovery after a depressive episode. Human white matter network ("connectome") analysis via network science is a suitable tool to investigate the association between affected brain connectivity and MDD. This study examines structural connectome topology in 464 MDD patients (mean age: 36.6 years) and 432 healthy controls (35.6 years). MDD patients were stratified categorially by current disease status (acute vs. partial remission vs. full remission) based on DSM-IV criteria. Current symptom severity was assessed continuously via the Hamilton Depression Rating Scale (HAMD). Connectome matrices were created via a combination of T1-weighted magnetic resonance imaging (MRI) and tractography methods based on diffusion-weighted imaging. Global tract-based metrics were not found to show significant differences between disease status groups, suggesting conserved global brain connectivity in MDD. In contrast, reduced global fractional anisotropy (FA) was observed specifically in acute depressed patients compared to fully remitted patients and healthy controls. Within the MDD patients, FA in a subnetwork including frontal, temporal, insular, and parietal nodes was negatively associated with HAMD, an effect remaining when correcting for lifetime disease severity. Therefore, our findings provide new evidence of MDD to be associated with structural, yet dynamic, state-dependent connectome alterations, which covary with current disease severity and remission status after a depressive episode

    Association between genetic risk for type 2 diabetes and structural brain connectivity in major depressive disorder

    No full text
    BACKGROUND: Major depressive disorder (MDD) and type 2 diabetes (T2D) are known to share clinical comorbidity and to have genetic overlap. Besides their shared genetics, both diseases seem to be associated with alterations in brain structural connectivity and impaired cognitive performance, but little is known about the mechanisms by which genetic risk of T2D might affect brain structure and function and if so, how these effects could contribute to the disease course of MDD. METHODS: This study explores the association of polygenic risk for T2D with structural brain connectome topology and cognitive performance in 434 nondiabetic MDD patients and 539 healthy controls. RESULTS: Polygenic risk score for T2D across MDD patients and healthy controls was found to be associated with reduced global fractional anisotropy, a marker of white matter microstructure, an effect found to be predominantly present in MDD-related fronto-temporo-parietal connections. A mediation analysis further suggests that this FA variation may mediate the association between PGS and cognitive performance. CONCLUSIONS: Our findings provide preliminary evidence of a polygenic risk for T2D to be linked to brain structural connectivity and cognition in MDD patients and healthy controls, even in the absence of a direct T2D diagnosis. This suggests an effect of T2D genetic risk on white matter integrity, which may mediate an association of genetic risk for diabetes and cognitive impairments
    corecore