95 research outputs found

    My Perfect Picture: You

    Get PDF
    Poetry by Joplin Finfrock. Finalist in the 2018 Manuscripts Poetry Contest

    School Is Now In Session: African American Education During Reconstruction

    Get PDF
    Editor\u27s note: This article is the recipient of the issue\u27s award for Excellence in Historiography. I began writing my ASI 120 historiography paper by selecting the topic of African American education during Reconstruction. I spent several weeks researching how the historiography of African American education during Reconstruction has changed over time and creating an annotated bibliography of my nine sources. While creating my annotated bibliography, I grouped my nine sources into three interpretive categories based on how each author choose to interpret the history of African American education during Reconstruction. Finally, I used my annotated bibliography to create my historiography paper. In my historiography paper, I compared the three interpretive categories to determine which of the categories was, in my opinion, the best using a select criteria of requirements

    Marshall University Music Department Presents a Senior Honors Recital, Berni Finfrock, Oboe

    Get PDF
    https://mds.marshall.edu/music_perf/1159/thumbnail.jp

    Geometry acquisition and grid generation: Recent experiences with complex aircraft configurations

    Get PDF
    Important issues involved in working with complex geometries are discussed. Approaches taken to address complex geometry issues in the McDonnell Aircraft Computational Grid System and related geometry processing tools are discussed. The efficiency of acquiring a suitable geometry definition, the need to manipulate the geometry, and the time and skill level required to generate the grid while preserving geometric fidelity are discussed

    Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media.

    Get PDF
    Hydrogen evolution reaction is an important process in electrochemical energy technologies. Herein, ruthenium and nitrogen codoped carbon nanowires are prepared as effective hydrogen evolution catalysts. The catalytic performance is markedly better than that of commercial platinum catalyst, with an overpotential of only -12 mV to reach the current density of 10 mV cm-2 in 1 M KOH and -47 mV in 0.1 M KOH. Comparisons with control experiments suggest that the remarkable activity is mainly ascribed to individual ruthenium atoms embedded within the carbon matrix, with minimal contributions from ruthenium nanoparticles. Consistent results are obtained in first-principles calculations, where RuCxNy moieties are found to show a much lower hydrogen binding energy than ruthenium nanoparticles, and a lower kinetic barrier for water dissociation than platinum. Among these, RuC2N2 stands out as the most active catalytic center, where both ruthenium and adjacent carbon atoms are the possible active sites

    A cross scale investigation of galena oxidation and controls on mobilization of lead in mine waste rock.

    Get PDF
    Abstract Galena and Pb-bearing secondary phases are the main sources of Pb in the terrestrial environment. Oxidative dissolution of galena releases aqueous Pb and SO4 to the surficial environment and commonly causes the formation of anglesite (in acidic environments) or cerussite (in alkaline environments). However, conditions prevalent in weathering environments are diverse and different reaction mechanisms reflect this variability at various scales. Here we applied complementary techniques across a range of scales, from nanometers to 10 s of meters, to study the oxidation of galena and accumulation of secondary phases that influence the release and mobilization of Pb within a sulfide-bearing waste-rock pile. Within the neutral-pH pore-water environment, the oxidation of galena releases Pb ions resulting in the formation of secondary Pb-bearing carbonate precipitates. Cerussite is the dominant phase and shannonite is a possible minor phase. Dissolved Cu from the pore water reacts at the surface of galena, forming covellite at the interface. Nanometer scale characterization suggests that secondary covellite is intergrown with secondary Pb-bearing carbonates at the interface. A small amount of the S derived from galena is sequestered with the secondary covellite, but the majority of the S is oxidized to sulfate and released to the pore water

    Mercury distribution and speciation in biochar particles reacted with contaminated sediment up to 1030days: A synchrotron- based study

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.jclepro.2019.01.006 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A previous long-term microcosm experiment showed mercury (Hg) in the aqueous phase of contaminated sediment was effectively stabilized through the addition of biochar. The present study focuses on the application of synchrotron-related methods to evaluate the distribution and speciation of Hg in the biochar particles reacted for 235, 387, and 1030 days. The study provided more information on Hg stabilization mechanisms in addition to the information obtained by the previous studies. Confocal micro-X-ray fluorescence imaging (CMXRFI) and micro-X-ray fluorescence (micro-XRF) maps show that mercury co-exists with S, Cu, Fe, Mn, and Zn on the surface and inside the particles of biochar. Extended X-ray absorption fine structure (EXAFS) modeling shows that Hg is in an oxide form on the surface of an iron (hydro)oxide particle from fresh sediment and in Hg-sulfide forms in biochar samples. S X-ray absorption near-edge structure (XANES) analyses show that sulfide is present within the biochar particles. After amendment with biochars, a fraction of the Hg originally present in unstable forms (dissolvable, HgO, colloidal, nano, etc.) in the sediment was likely stabilized as less soluble Hg-sulfide phases on the surface or within the biochar particle. These results suggest Hg accumulation by the biochar particles renders it less potential for transport and bioavailability.Natural Sciences and Engineering Research CouncilProgram of Geological ProcessesResources and Environment in the Yangtze Basin, Grant CUGCJ1702National Natural Science Foundation of China, Grant 4187747

    Microbiological and geochemical characterization of As-bearing tailings and underlying sediments

    Get PDF
    Over the past 100 years, extensive oxidation of As-bearing sulfide-rich tailings from the abandoned Long Lake Gold Mine (Canada) has resulted in the formation of acid mine drainage (pH 2.0-3.9) containing high concentrations of dissolved As (∼400 mg L ), SO , Fe and other metals. Dissolved As is predominantly present as As(III), with increased As(V) near the tailings surface. Pore-gas O is depleted to < 1 vol% in the upper 30-80 cm of the tailings profile. The primary sulfides, pyrite and arsenopyrite, are highly oxidized in the upper portions of the tailings. Elevated proportions of sulfide-oxidizing prokaryotes are present in this zone (mean 32.3% of total reads). The tailings are underlain by sediments rich in organic C. Enrichment in δ S-SO in pore-water samples in the organic C-rich zone is consistent with dissimilatory sulfate reduction. Synchrotron-based spectroscopy indicates an abundance of ferric arsenate phases near the impoundment surface and the presence of secondary arsenic sulfides in the organic-C beneath the tailings. The persistence of elevated As concentrations beneath the tailings indicates precipitation of secondary As sulfides is not sufficient to completely remove dissolved As. The oxidation of sulfides and release of As is expected to continue for decades. The findings will inform future remediation efforts and provide a foundation for the long-term monitoring of the effectiveness of the remediation program. [Abstract copyright: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
    • …
    corecore