291 research outputs found

    The meaning of different forms of structural myocardial injury, immune response and timing of infarct necrosis and cardiac repair

    Get PDF
    Although a decline in the all-cause and cardiac mortality rates following myocardial infarction (MI) during the past 3 decades has been reported, MI is a major cause of death and disability worldwide. From a pathological point of view MI consists in a particular myocardial cell death due to prolonged ischemia. After the onset of myocardial ischemia, cell death is not immediate, but takes a finite period of time to develop. Once complete myocytes’ necrosis has occurred, a process leading to a healed infarction takes place. In fact, MI is a dynamic process that begins with the transition from reversible to irreversible ischemic injury and culminates in the replacement of dead myocardium by a fibrous scar. The pathobiological mechanisms underlying this process are very complex, involving an inflammatory response by several pathways, and pose a major challenge to ability to improve our knowledge. An improved understanding of the pathobiology of cardiac repair after MI and further studies of its underlying mechanisms provide avenues for the development of future strategies directed toward the identification of novel therapies. The chronologic dating of MI is of great importance both to clinical and forensic investigation, that is, the ability to create a theoretical timeline upon which either clinicians or forensic pathologists may increase their ability to estimate the time of MI. Aging of MI has very important practical implications in clinical practice since, based on the chronological dating of MI, attractive alternatives to solve therapeutic strategies in the various phases of MI are developing

    Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction

    Get PDF
    Oxidative stress in heart failure or during ischemia/reperfusion occurs as a result of the excessive generation or accumulation of free radicals or their oxidation products. Free radicals formed during oxidative stress can initiate lipid peroxidation, oxidize proteins to inactive states and cause DNA strand breaks. Oxidative stress is a condition in which oxidant metabolites exert toxic effects because of their increased production or an altered cellular mechanism of protection. In the early phase of acute heart ischemia cytokines have the feature to be functional pleiotropy and redundancy, moreover, several cytokines exert similar and overlapping actions on the same cell type and one cytokine shows a wide range of biological effects on various cell types. Activation of cytokine cascades in the infarcted myocardium was established in numerous studies. In experimental models of myocardial infarction, induction and release of the pro-inflammatory cytokines like TNF-&alpha (Tumor Necrosis Factor &alpha), IL-1&beta (Interleukin- 1&beta) and IL-6 (Interleukin-6) and chemokines are steadily described. The current review examines the role of oxidative stress and pro-inflammatory cytokines response following acute myocardial infarction and explores the inflammatory mechanisms of cardiac injur

    Confocal laser scanning microscope, raman microscopy and western blotting to evaluate inflammatory response after myocardial infarction

    Get PDF
    Cardiac muscle necrosis is associated with inflammatory cascade that clears the infarct from dead cells and matrix debris, and then replaces the damaged tissue with scar, through three overlapping phases: the inflammatory phase, the proliferative phase and the maturation phase. Western blotting, laser confocal microscopy, Raman microscopy are valuable tools for studying the inflammatory response following myocardial infarction both humoral and cellular phase, allowing the identification and semiquantitative analysis of proteins produced during the inflammatory cascade activation and the topographical distribution and expression of proteins and cells involved in myocardial inflammation. Confocal laser scanning microscopy (CLSM) is a relatively new technique for microscopic imaging, that allows greater resolution, optical sectioning of the sample and three-dimensional reconstruction of the same sample. Western blotting used to detect the presence of a specific protein with antibody-antigen interaction in the midst of a complex protein mixture extracted from cells, produced semi-quantitative data quite easy to interpret. Confocal Raman microscopy combines the three-dimensional optical resolution of confocal microscopy and the sensitivity to molecular vibrations, which characterizes Raman spectroscopy. The combined use of western blotting and confocal microscope allows detecting the presence of proteins in the sample and trying to observe the exact location within the tissue, or the topographical distribution of the same. Once demonstrated the presence of proteins (cytokines, chemokines, etc.) is important to know the topographical distribution, obtaining in this way additional information regarding the extension of the inflammatory process in function of the time stayed from the time of myocardial infarction. These methods may be useful to study and define the expression of a wide range of inflammatory mediators at several different timepoints providing a more detailed analysis of the time course of the infarct

    A theoretical timeline for myocardial infarction: immunohistochemical evaluation and western blot quantification for Interleukin-15 and Monocyte chemotactic protein-1 as very early markers

    Get PDF
    Background: Experimental and human studies have demonstrated that innate immune mechanisms and consequent inflammatory reaction play a critical role in cardiac response to ischemic injury. Thus, the detection of immuno-inflammatory and cellular phenomena accompanying cardiac alterations during the early inflammatory phase of myocardial infarction (MI) may be an excellent diagnostic tool. Current knowledge of the chronology of the responses of myocardial tissue following the occurrence of ischemic insult, as well as the existence of numerous studies aiming to identify reliable markers in dating MI, induced us to investigate the myocardial specimens of MI fatal cases in order to better define the age of MI. Methods: We performed an immunohistochemical study and a Western blot analysis to evaluate detectable morphological changes in myocardial specimens of fatal MI cases and to quantify the effects of cardiac expression of inflammatory mediators (CD15, IL-1 β, IL-6, TNF-α, IL-15, IL-8, MCP-1, ICAM-1, CD18, tryptase) and structural and functional cardiac proteins. Results: We observed a biphasic course of MCP-1: it was strongly expressed in the very early phase (0-4 hrs), to diminish in the early period (after 6-8 hrs). Again, our choice of IL-15 is explained by the synergism with neutrophilic granulocytes (CD15) and our study shows the potential for striking cytokine synergy in promoting fast, local neutrophil response in damaged tissues. A progressively stronger immunoreaction for the CD15 antibody was visible in the areas where the margination of circulating inflammatory cells was detectable, up to very strong expression in the oldest ones (>12 hours). Further, the induction of CD15, IL-15, MCP-1 expression levels was quantified by Western blot analysis. The resultswereasfollows:IL-15/β-actin 0.80, CD15/ β-actin 0.30, and MCP-1/β-actin 0.60, matching perfectly with the results of immunohistochemistry. Control hearts from traumatic death cases did not show any immunoreactivity to the pro-inflammatory markers, neither were there any reactions in Western blot analysis. Conclusions: Essential markers (i.e. IL-15, MCP-1) are suitable indicators of myocardial response to ischemic insult involving very early phase reaction (inflammatory response and cytokine release). In the very near future, proteomics may help clinicians and pathologists to better understand mechanisms relating to cardiac repair and remodeling and provide targets for future therapies

    B-type natriuretic peptide levels predict extent and severity of coronary disease in non-ST elevation coronary syndromes and normal left ventricular systolic function.

    Get PDF
    BACKGROUND: B-type natriuretic peptide (BNP) has been used recently as a biological marker in patients with coronary artery disease (CAD) with ST-elevation, as well as without ST-elevation. BNP is able to predict systolic dysfunction, adding new prognostic information to existing traditional markers. However is not known if there is a relation between the quantity of BNP levels and the severity of coronary artery disease. METHODS: This study compared B-type natriuretic peptide (BNP) levels in patients with stable angina (SA) and acute coronary syndromes (ACS) without ST-elevation in relation to angiographic lesions using TIMI and Gensini Scores. We studied 282 patients with CAD without ST elevation and preserved systolic function. BNP samples were measured in all recruited patients within 24 hours of hospitalization. RESULTS: BNP values were progressively increased in relation to the severity of diagnosis: SA (52.6±49.4 pg/mL ) UA (243.3±212 pg/mL) NSTE-ACS (421.7±334 pg/mL) (p<0.0001 and p<0.007 respectively). No statistically significant difference was observed between patients with SA and controls (21.2±6.8 pg/mL). The analysis of BNP levels in relation to the number of involved vessels demonstrated significantly increased levels in patients with multivessel disease compared to patients with 1 or 2 vessel disease (1-86.2±46.3 pg/mL; 2-127±297 pg/mL; 3-295±318 pg/mL; 4-297±347 pg/mL p<0.001 and p<0.003). Evaluation of BNP using Gensini Score showed a strong relation between BNP and coronary disease extension (r=0.38 p<0.0001).This trend was maintained in all CAD groups (SA=r 0.54; UA r=0.36 NSTE-ACS r=0.28). CONCLUSIONS: Circulating BNP levels appear elevated in ACS with diffuse coronary involvement, even in the absence of systolic dysfunction. BNP is also associated with multi-vessel disease and the extension of coronary disease

    Leptomeningeal disease and brain control after postoperative stereotactic radiosurgery with or without immunotherapy for resected brain metastases

    Get PDF
    Purpose Immunotherapy has shown activity in patients with brain metastases (BM) and leptomeningeal disease (LMD). We have evaluated LMD and intraparenchymal control rates for patients with resected BM receiving postoperative stereotactic radiosurgery (SRS) and immunotherapy or postoperative SRS alone. We hypothesize that postoperative SRS and immunotherapy will result in a lower rate of LMD with acceptable toxicity compared with postoperative SRS. Patients and methods One hundred and twenty-nine patients with non-small-cell lung cancer (NSCLC) and melanoma BM who received postoperative fractionated SRS (fSRS; 3×9 Gy) in combination with immunotherapy or postoperative fSRS alone for completely resected BM were retrospectively evaluated. The primary endpoint of the study was the rate of LMD after treatments. The secondary endpoints were local failure, distant brain parenchymal failure (DBF), overall survival (OS), and treatment-related toxicity. Results Sixty-three patients received postoperative SRS and immunotherapy, either nivolumab or pembrolizumab, and 66 patients received postoperative SRS alone to the resection cavity. With a median follow-up of 15 months, LMD occurred in 19 patients: fSRS group, 14; fSRS and immunotherapy, 5. The 12-month LMD cumulative rates were 22% (95% CI 14% to 37%) in the fSRS group and 6% (95% CI 2% to 17%) in the combined treatment group (p=0.007). Resection cavity control was similar between the groups, whereas DBF and OS were significantly different; the 1-year DBF rates were 31% (95% CI 20% to 46%) in the fSRS and immunotherapy group and 52% (95% CI 39% to 68%) in the fSRS group; respective OS rates were 78% (95% CI 67% to 88%) and 58.7% (95% CI 47% to 70%). Twenty-two patients undergoing postoperative fSRS and immunotherapy and nine subjected to postoperative fSRS experienced treatment-related imaging changes suggestive of radiation-induced brain necrosis (p=0.02). Conclusions Postoperative fSRS in combination with immunotherapy decreases the incidence of LMD and DBF in patients with resected BM from NSCLC and melanoma as compared with fSRS alone, reducing the rate of neurological death and prolonging survival

    Narrow genetic base in forest restoration with holm oak (Quercus ilex L.) in Sicily

    Full text link
    In order to empirically assess the effect of actual seed sampling strategy on genetic diversity of holm oak (Quercus ilex) forestations in Sicily, we have analysed the genetic composition of two seedling lots (nursery stock and plantation) and their known natural seed origin stand by means of six nuclear microsatellite loci. Significant reduction in genetic diversity and significant difference in genetic composition of the seedling lots compared to the seed origin stand were detected. The female and the total effective number of parents were quantified by means of maternity assignment of seedlings and temporal changes in allele frequencies. Extremely low effective maternity numbers were estimated (Nfe \approx 2-4) and estimates accounting for both seed and pollen donors gave also low values (Ne \approx 35-50). These values can be explained by an inappropriate forestry seed harvest strategy limited to a small number of spatially close trees

    Patterning and process parameter effects in 3D suspension near-field electrospinning of nanoarrays

    Get PDF
    The extracellular matrix (ECM) contains nanofibrous proteins and proteoglycans. Nanofabrication methods have received growing interest in recent years as a means of recapitulating these elements within the ECM. Near-field electrospinning (NFES) is a versatile fibre deposition method, capable of layer-by-layer nano-fabrication. The maximum layer height is generally limited in layer-by-layer NFES as a consequence of electrostatic effects of the polymer at the surface, due to residual charge and polymer dielectric properties. This restricts the total volume achievable by layer-by-layer techniques. Surpassing this restriction presents a complex challenge, leading to research innovations aimed at increasing patterning precision, and achieving a translation from 2D to 3D additive nanofabrication. Here we investigated a means of achieving this translation through the use of 3D electrode substrates. This was addressed by in-house developed technology in which selective laser melt manufactured standing pillar electrodes were combined with a direct suspension near-field electrospinning (SNFES) technique, which implements an automated platform to manoeuvre the pillar electrodes around the emitter in order to suspend fibres in the free space between the electrode support structures. In this study SNFES was used in multiple operation modes, investigating the effects of varying process parameters, as well as pattern variations on the suspended nanoarrays. Image analysis of the nanoarrays allowed for the assessment of fibre directionality, isotropy, and diameter; identifying optimal settings to generate fibres for tissue engineering applications

    Recurrent flares in active region NOAA 11283

    Get PDF
    Context. Flares and coronal mass ejections (CMEs) are solar phenomena that are not yet fully understood. Several investigations have been performed to single out their related physical parameters that can be used as indices of the magnetic complexity leading to their occurrence. Aims. In order to shed light on the occurrence of recurrent flares and subsequent associated CMEs, we studied the active region NOAA 11283 where recurrent M and X GOES-class flares and CMEs occurred. Methods. We use vector magnetograms taken by HMI/SDO to calculate the horizontal velocity fields of the photospheric magnetic structures, the shear and the dip angles of the magnetic field, the magnetic helicity flux distribution, and the Poynting fluxes across the photosphere due to the emergence and the shearing of the magnetic field. Results. Although we do not observe consistent emerging magnetic flux through the photosphere during the observation time interval, we detected a monotonic increase of the magnetic helicity accumulated in the corona. We found that both the shear and the dip angles have high values along the main polarity inversion line (PIL) before and after all the events. We also note that before the main flare of X2.1 GOES class, the shearing motions seem to inject a more significant energy than the energy injected by the emergence of the magnetic field. Conclusions. We conclude that the very long duration (about 4 days) of the horizontal displacement of the main photospheric magnetic structures along the PIL has a primary role in the energy release during the recurrent flares. This peculiar horizontal velocity field also contributes to the monotonic injection of magnetic helicity into the corona. This process, coupled with the high shear and dip angles along the main PIL, appears to be responsible for the consecutive events of loss of equilibrium leading to the recurrent flares and CMEs
    corecore