4,907 research outputs found

    Constrained energy minimization and orbital stability for the NLS equation on a star graph

    Full text link
    We consider a nonlinear Schr\"odinger equation with focusing nonlinearity of power type on a star graph G{\mathcal G}, written as i∂tΨ(t)=HΨ(t)−∣Ψ(t)∣2μΨ(t) i \partial_t \Psi (t) = H \Psi (t) - |\Psi (t)|^{2\mu}\Psi (t), where HH is the selfadjoint operator which defines the linear dynamics on the graph with an attractive δ\delta interaction, with strength α<0\alpha < 0, at the vertex. The mass and energy functionals are conserved by the flow. We show that for 0<μ<20<\mu<2 the energy at fixed mass is bounded from below and that for every mass mm below a critical mass m∗m^* it attains its minimum value at a certain \hat \Psi_m \in H^1(\GG) , while for m>m∗m>m^* there is no minimum. Moreover, the set of minimizers has the structure {\mathcal M}={e^{i\theta}\hat \Psi_m, \theta\in \erre}. Correspondingly, for every m<m∗m<m^* there exists a unique ω=ω(m)\omega=\omega(m) such that the standing wave Ψ^ωeiωt\hat\Psi_{\omega}e^{i\omega t} is orbitally stable. To prove the above results we adapt the concentration-compactness method to the case of a star graph. This is non trivial due to the lack of translational symmetry of the set supporting the dynamics, i.e. the graph. This affects in an essential way the proof and the statement of concentration-compactness lemma and its application to minimization of constrained energy. The existence of a mass threshold comes from the instability of the system in the free (or Kirchhoff's) case, that in our setting corresponds to \al=0.Comment: 26 pages, 1 figur

    The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit

    Full text link
    In the present paper we study the following scaled nonlinear Schr\"odinger equation (NLS) in one space dimension: iddtψε(t)=−Δψε(t)+1ϵV(xϵ)∣ψε(t)∣2μψε(t)ϵ>0 ,V∈L1(R,(1+∣x∣)dx)∩L∞(R) . i\frac{d}{dt} \psi^{\varepsilon}(t) =-\Delta\psi^{\varepsilon}(t) + \frac{1}{\epsilon}V\left(\frac{x}{\epsilon}\right)|\psi^{\varepsilon}(t)|^{2\mu}\psi^{\varepsilon}(t) \quad \quad \epsilon>0\ ,\quad V\in L^1(\mathbb{R},(1+|x|)dx) \cap L^\infty(\mathbb{R}) \ . This equation represents a nonlinear Schr\"odinger equation with a spatially concentrated nonlinearity. We show that in the limit ϵ→0\epsilon\to 0, the weak (integral) dynamics converges in H1(R)H^1(\mathbb{R}) to the weak dynamics of the NLS with point-concentrated nonlinearity: iddtψ(t)=Hαψ(t). i\frac{d}{dt} \psi(t) =H_{\alpha}\psi(t) . where HαH_{\alpha} is the laplacian with the nonlinear boundary condition at the origin ψ′(t,0+)−ψ′(t,0−)=α∣ψ(t,0)∣2μψ(t,0)\psi'(t,0+)-\psi'(t,0-)=\alpha|\psi(t,0)|^{2\mu}\psi(t,0) and α=∫RVdx\alpha=\int_{\mathbb{R}}Vdx. The convergence occurs for every μ∈R+\mu\in \mathbb{R}^+ if V≥0V \geq 0 and for every μ∈(0,1)\mu\in (0,1) otherwise. The same result holds true for a nonlinearity with an arbitrary number NN of concentration pointsComment: 10 page

    Variational properties and orbital stability of standing waves for NLS equation on a star graph

    Full text link
    We study standing waves for a nonlinear Schr\"odinger equation on a star graph {G\mathcal{G}} i.e. NN half-lines joined at a vertex. At the vertex an interaction occurs described by a boundary condition of delta type with strength α⩽0\alpha\leqslant 0. The nonlinearity is of focusing power type. The dynamics is given by an equation of the form iddtΨt=HΨt−∣Ψt∣2μΨt i \frac{d}{dt}\Psi_t = H \Psi_t - | \Psi_t |^{2\mu} \Psi_t , where HH is the Hamiltonian operator which generates the linear Schr\"odinger dynamics. We show the existence of several families of standing waves for every sign of the coupling at the vertex for every ω>α2N2\omega > \frac{\alpha^2}{N^2}. Furthermore, we determine the ground states, as minimizers of the action on the Nehari manifold, and order the various families. Finally, we show that the ground states are orbitally stable for every allowed ω\omega if the nonlinearity is subcritical or critical, and for ω<ω∗\omega<\omega^\ast otherwise.Comment: 36 pages, 2 figures, final version appeared in JD

    Characterisation of flow dynamics within and around an isolated forest, through measurements and numerical simulations

    Get PDF
    The case study of ‘Bosco Fontana’, a densely-vegetated forest located in the north of Italy, is analysed both experimentally and numerically to characterise the internal ventilation of a finite forest with a vertically non-homogeneous canopy. Measurements allow for the evaluation of the turbulent exchange across the forest canopy. The case study is then reproduced numerically via a two-dimensional RANS simulation, successfully validated against experimental data. The analysis of the internal ventilation leads to the identification of seven regions of motion along the predominate-wind direction, for whose definition a new in-canopy stability parameter was introduced. In the vertical direction, the non-homogeneity of the canopy leads to the separation of the canopy layer into an upper foliage layer and a lower bush layer, characterised respectively by an increasing streamwise velocity and turbulence intensity, and a weak backflow. The conclusions report an improved description of the dynamic layer and regions of motion presented in the literature

    On the Asymptotic Dynamics of a Quantum System Composed by Heavy and Light Particles

    Full text link
    We consider a non relativistic quantum system consisting of KK heavy and NN light particles in dimension three, where each heavy particle interacts with the light ones via a two-body potential αV\alpha V. No interaction is assumed among particles of the same kind. Choosing an initial state in a product form and assuming α\alpha sufficiently small we characterize the asymptotic dynamics of the system in the limit of small mass ratio, with an explicit control of the error. In the case K=1 the result is extended to arbitrary α\alpha. The proof relies on a perturbative analysis and exploits a generalized version of the standard dispersive estimates for the Schr\"{o}dinger group. Exploiting the asymptotic formula, it is also outlined an application to the problem of the decoherence effect produced on a heavy particle by the interaction with the light ones.Comment: 38 page

    Nurses’ behavior regarding pain treatment in an emergency department: A single-center observational study

    Get PDF
    Purpose: The aim of this prospective study was to assess the behavior of emergency department (ED) nurses with regard to pain and their role in pain management in a real-life clinical setting. Methods: A total of 509 consecutive patients were enrolled during a 6-week period. A case-report form was used to collect data on nurses’ approaches to pain, time to analgesia provision, and patient-perceived quality of analgesia. Results: Triage nurses actively inquired about pain in almost every case, but they did not estimate pain intensity in a third of patients. In the majority of cases, triage nurses did not report pain-related findings to the physician, who was the only professional that could prescribe analgesia to patients. The assignment of the color-coding of triage by nurses appears to be related to the perceived severity of the clinical case and a more comprehensive evaluation of pain. More than half of patients were at least fairly satisfied with analgesia. Conclusion: Pain is increasingly screened during triage, but its comprehensive assessment and management still lack systematic application. We believe that further education and implementation of analgesia protocols may empower nurses to manage ED patients’ pain more effectively and in a more timely manner

    Struggling with COVID-19 in Adult Inborn Errors of Immunity Patients: A Case Series of Combination Therapy and Multiple Lines of Therapy for Selected Patients

    Get PDF
    Background: The SARS-CoV-2 infection is now a part of the everyday lives of immunocompromised patients, but the choice of treatment and the time of viral clearance can often be complex, exposing patients to possible complications. The role of the available antiviral and monoclonal therapies is a matter of debate, as are their effectiveness and potential related adverse effects. To date, in the literature, the amount of data on the use of combination therapies and on the multiple lines of anti-SARS-CoV-2 therapy available to the general population and especially to inborn error of immunity (IEI) patients is small. Methods: Here, we report a case series of five adult IEI patients managed as inpatients at three Italian IEI referral centers (Rome, Treviso, and Cagliari) treated with combination therapy or multiple therapeutic lines for SARS-CoV-2 infection, such as monoclonal antibodies (mAbs), antivirals, convalescent plasma (CP), mAbs plus antiviral, and CP combined with antiviral. Results: This study may support the use of combination therapy against SARS-CoV-2 in complicated IEI patients with predominant antibody deficiency and impaired vaccine response
    • …
    corecore