research

Variational properties and orbital stability of standing waves for NLS equation on a star graph

Abstract

We study standing waves for a nonlinear Schr\"odinger equation on a star graph {G\mathcal{G}} i.e. NN half-lines joined at a vertex. At the vertex an interaction occurs described by a boundary condition of delta type with strength α0\alpha\leqslant 0. The nonlinearity is of focusing power type. The dynamics is given by an equation of the form iddtΨt=HΨtΨt2μΨt i \frac{d}{dt}\Psi_t = H \Psi_t - | \Psi_t |^{2\mu} \Psi_t , where HH is the Hamiltonian operator which generates the linear Schr\"odinger dynamics. We show the existence of several families of standing waves for every sign of the coupling at the vertex for every ω>α2N2\omega > \frac{\alpha^2}{N^2}. Furthermore, we determine the ground states, as minimizers of the action on the Nehari manifold, and order the various families. Finally, we show that the ground states are orbitally stable for every allowed ω\omega if the nonlinearity is subcritical or critical, and for ω<ω\omega<\omega^\ast otherwise.Comment: 36 pages, 2 figures, final version appeared in JD

    Similar works