3,397 research outputs found

    Strangelets: Who is Looking, and How?

    Full text link
    It has been over 30 years since the first suggestion that the true ground state of cold hadronic matter might be not nuclear matter but rather strange quark matter (SQM). Ever since, searches for stable SQM have been proceeding in various forms and have observed a handful of interesting events but have neither been able to find compelling evidence for stable strangelets nor to rule out their existence. I will survey the current status and near future of such searches with particular emphasis on the idea of SQM from strange star collisions as part of the cosmic ray flux.Comment: Talk given at International Conference on Strangeness in Quark Matter, 2006. 8 pages. 1 figur

    'She's like a daughter to me': insights into care, work and kinship from rural Russia

    Get PDF
    This article draws on ethnographic research into a state-funded homecare service in rural Russia. The article discusses intersections between care, work and kinship in the relationships between homecare workers and their elderly wards and explores the ways in which references to kinship, as a means of authenticating paid care and explaining its emotional content, reinforce public and private oppositions while doing little to relieve the tensions and conflicts of care work. The discussion brings together detailed empirical insights into local ideologies and practices as a way of generating new theoretical perspectives, which will be of relevance beyond the particular context of study

    On the Timing and Nature of the Multiple Phases of Slope Instability on Eastern Rockall Bank, Northeast Atlantic

    Get PDF
    One of the most challenging tasks when studying large submarine landslides is determining whether the landslide was initiated as a single large event, a chain of events closely spaced in time or multiple events separated by long periods of time as all have implications in risk assessments. In this study we combine new multichannel seismic profiles and new sediment cores with bathymetric data to test whether the Rockall Bank Slide Complex, offshore western Ireland, is the composite of multiple slope collapse events and, if so, to differentiate them. We conclude that there have been at least three voluminous episodes of slope collapse separated by long periods of slope stability, a fourth, less voluminous event, and possibly a fifth more localized event. The oldest event, Slide A (200 km3), is estimated to be several hundred thousand years old. The second event, Slide B (125 km3), took place at the same location as slide A, reactivating the same scar, nearly 200 ka ago, possibly through retrogression of the scarp. Slide C (400 km3) took place 22 ka ago and occurred further north from the other slides. Slide D was a much smaller event that happened 10 ka ago, while the most recent event, albeit very small scale, took place within the last 1,000 years. This study highlights the need to thoroughly investigate large slide complexes to evaluate event sequencing, as seismic studies may hide multiple small‐scale events. This work also reveals that the same slide scarps can be reactivated and generate slides with different flow behaviors

    Radiative corrections to scalar-fermion pair production in high energy e+e- collisions

    Full text link
    We study the one-loop radiative corrections to pair production of the supersymmetric scalar partners of the standard fermions in e+e- annihilation. Both electroweak and SUSY-QCD corrections are considered. Applications are for production of scalar fermions of the third generation, e^+e^-\to \wt{f}_i \wt{f}_j^* (i,j=1,2), f=t,b,τf=t, b,\tau, as well as for production of scalar quarks of the first and second generation. Effects on integrated cross sections are discussed and also the one-loop induced forward-backward asymmetries are studied. It is found that at low energy, \sqrt{s}\approx 500 \to 1000 GeV, the corrections are dominated by the QCD contributions, At high energy, s≄2\sqrt{s}\geq 2 TeV, the electroweak box diagrams give a substantial contribution and even dominate in some regions of parameters space. The purely loop-induced forward-backward asymmetry can reach values of several per cent.Comment: 23 pages, latex, 13 figure

    Following the Formation of Synaptonemal Complex Formation in Wheat and Barley by High-Resolution Microscopy

    Get PDF
    International audienceWheat and barley have large genomes of 15 Gb and 5.1 Gb, respectively, which is much larger than the human genome (3.3 Gb). The release of their respective genomes has been a tremendous advance the understanding of the genome organization and the ability for deeper functional analysis in particular meiosis. Meiosis is the cell division required during sexual reproduction. One major event of meiosis is called recombination, or the formation of crossing over, a tight link between homologous chromosomes, ensuring gene exchange and faithful chromosome segregation. Recombination is a major driver of genetic diversity but in these large genome crops, the vast majority of these events is constrained at the end of their chromosomes. It is estimated that in barley, about 30% of the genes are located within the poor recombining centromeric regions, making important traits, such as resistance to pest and disease for example, difficult to access. Increasing recombination in these crops has the potential to speed up breeding program and requires a good understand of the meiotic mechanism. However, most research on recombination in plant has been carried in Arabidopsis thaliana which despite many of the advantages it brings for plant research, has a small genome and more spread out of recombination compare to barley or wheat. Advance in microscopy and cytological procedures have emerged in the last few years, allowing to follow meiotic events in these crops. This protocol provides the steps required for cytological preparation of barley and wheat pollen mother cells for light microscopy, highlighting some of the differences between the two cereals

    Socially sensitive lactation: Exploring the social context of breastfeeding

    Get PDF
    Many women report difficulties with breastfeeding and do not maintain the practice for as long as intended. Although psychologists and other researchers have explored some of the difficulties they experience, fuller exploration of the relational contexts in which breastfeeding takes place is warranted to enable more in-depth analysis of the challenges these pose for breastfeeding women. The present paper is based on qualitative data collected from 22 first-time breastfeeding mothers through two phases of interviews and audio-diaries which explored how the participants experienced their relationships with significant others and the wider social context of breastfeeding in the first five weeks postpartum. Using a thematic analysis informed by symbolic interactionism, we develop the overarching theme of ‘Practising socially sensitive lactation’ which captures how participants felt the need to manage tensions between breastfeeding and their perceptions of the needs, expectations and comfort of others. We argue that breastfeeding remains a problematic social act, despite its agreed importance for child health. Whilst acknowledging the limitations of our sample and analytic approach, we suggest ways in which perinatal and public health interventions can take more effective account of the social challenges of breastfeeding in order to facilitate the health and psychological well-being of mothers and their infants

    Giant Thermoelectric Effect from Transmission Supernodes

    Full text link
    We predict an enormous order-dependent quantum enhancement of thermoelectric effects in the vicinity of a higher-order `supernode' in the transmission spectrum of a nanoscale junction. Single-molecule junctions based on 3,3'-biphenyl and polyphenyl ether (PPE) are investigated in detail. The nonequilibrium thermodynamic efficiency and power output of a thermoelectric heat engine based on a 1,3-benzene junction are calculated using many-body theory, and compared to the predictions of the figure-of-merit ZT.Comment: 5 pages, 6 figure

    Can accretion disk properties distinguish gravastars from black holes?

    Get PDF
    Gravastars, hypothetic astrophysical objects, consisting of a dark energy condensate surrounded by a strongly correlated thin shell of anisotropic matter, have been proposed as an alternative to the standard black hole picture of general relativity. Observationally distinguishing between astrophysical black holes and gravastars is a major challenge for this latter theoretical model. In the context of stationary and axially symmetrical geometries, a possibility of distinguishing gravastars from black holes is through the comparative study of thin accretion disks around rotating gravastars and Kerr-type black holes, respectively. In the present paper, we consider accretion disks around slowly rotating gravastars, with all the metric tensor components estimated up to the second order in the angular velocity. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution and equilibrium radiation spectrum) are different for these two classes of compact objects, consequently giving clear observational signatures. In addition to this, it is also shown that the conversion efficiency of the accreting mass into radiation is always smaller than the conversion efficiency for black holes, i.e., gravastars provide a less efficient mechanism for converting mass to radiation than black holes. Thus, these observational signatures provide the possibility of clearly distinguishing rotating gravastars from Kerr-type black holes.Comment: 12 pages, 12 figures. V2: 14 pages, significant discussion and references added, to appear in Class.Quant.Gra
    • 

    corecore