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Francisco S. N. Lobo‡
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Gravastars, hypothetic astrophysical objects, consisting of a dark energy condensate surrounded
by a strongly correlated thin shell of anisotropic matter, have been proposed as an alternative
to the standard black hole picture of general relativity. Observationally distinguishing between
astrophysical black holes and gravastars is a major challenge for this latter theoretical model. This
due to the fact that in static gravastars large stability regions (of the transition layer of these
configurations) exist that are sufficiently close to the expected position of the event horizon, so
that it would be difficult to distinguish the exterior geometry of gravastars from an astrophysical
black hole. However, in the context of stationary and axially symmetrical geometries, a possibility
of distinguishing gravastars from black holes is through the comparative study of thin accretion
disks around rotating gravastars and Kerr-type black holes, respectively. In the present paper, we
consider accretion disks around slowly rotating gravastars, with all the metric tensor components
estimated up to the second order in the angular velocity. Due to the differences in the exterior
geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature
distribution and equilibrium radiation spectrum) are different for these two classes of compact
objects, consequently giving clear observational signatures. In addition to this, it is also shown that
the conversion efficiency of the accreting mass into radiation is always smaller than the conversion
efficiency for black holes, i.e., gravastars provide a less efficient mechanism for converting mass to
radiation than black holes. Thus, these observational signatures provide the possibility of clearly
distinguishing rotating gravastars from Kerr-type black holes.

PACS numbers: 04.50.Kd, 04.70.Bw, 97.10.Gz

I. INTRODUCTION

The Schwarzschild solution has played a fundamental
conceptual role in general relativity, and beyond, for in-
stance, regarding event horizons, spacetime singularities,
and aspects of quantum field theory in curved spacetimes.
However, one still encounters in the literature the ex-
istence of misconceptions, as well as a certain ambigu-
ity inherent in the Schwarzschild solution (we refer the
reader to [1] for a detailed review). In this context, re-
cently a new final state of gravitational collapse has been
proposed, denoted as gravastars (gravitational vacuum
stars) [2], which represent a viable alternative to black
holes, and their properties have been extensively inves-
tigated. These models consist of a compact object with
an interior de Sitter condensate, governed by an equa-
tion of state given by p = −ρ, matched to a shell of
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finite thickness with an equation of state p = ρ. The
latter is then matched to an exterior Schwarzschild vac-
uum solution. The thick shell replaces both the de Sitter
and the Schwarzschild horizons, therefore, the gravastar
model has no singularity at the origin and no event hori-
zon, as its rigid surface is located at a radius slightly
greater than the Schwarzschild radius [2]. These config-
urations are stable from a thermodynamic point of view.
The issue of the dynamic stability of the transition layer
(an infinitesimally thin shell) against spherically symmet-
ric perturbations was considered in [3], by constructing
a model that shares the key features of the gravastar
scenario. It was found that there are some physically
reasonable equations of state for the transition layer that
lead to stability. This latter stability analysis was further
generalized to an anti-de Sitter or de Sitter interior and
a Schwarzschild (anti)-de Sitter or Reissner-Nordström
exterior [4]. Recently, dynamical models of prototype
gravastars were constructed and studied [5]. It was found
that in some cases the models represent stable gravastars,
while in other cases they represent “bounded excursion”
stable gravastars, where the thin shell is oscillating be-
tween two finite radii. In some other cases they collapse
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mailto:harko@hkucc.hku.hk
mailto:zkovacs@mpifr-bonn.mpg.de
mailto:flobo@cii.fc.ul.pt


2

until the formation of black holes.

In addition to this, gravastar models that exhibit
continuous pressure without the presence of infinitesi-
mally thin shells were introduced in [6] and further an-
alyzed in [7]. By considering the usual TOV equation
for static solutions with negative central pressure, it
was found that gravastars cannot be perfect fluids and
anisotropic pressures in the ‘crust’ of a gravastar-like
object are unavoidable. The anisotropic TOV equation
can then be used to bound the pressure anisotropy, and
the transverse stresses that support a gravastar permit
a higher compactness than the Buchdahl-Bondi bound
for perfect-fluid stars. A wide variety of gravastar mod-
els within the context of nonlinear electrodynamics were
also constructed in [8]. Using the F representation, spe-
cific forms of Lagrangians were considered describing
magnetic gravastars, which may be interpreted as self-
gravitating magnetic monopoles with charge g. Using the
dual P formulation of nonlinear electrodynamics, electric
gravastar models were constructed by considering specific
structural functions, and the characteristics and physical
properties of the solutions were further explored. Gravas-
tar solutions with a Born-Infeld phantom replacing the
de Sitter interior were also analyzed in [9].

It has also been recently proposed by Chapline that
this new emerging picture consisting of a compact ob-
ject resembling ordinary spacetime, in which the vacuum
energy is much larger than the cosmological vacuum en-
ergy, has been denoted as a ‘dark energy star’ [10]. In-
deed, a generalization of the gravastar picture was con-
sidered in [11] by considering a matching of an interior
solution governed by the dark energy equation of state,
ω = p/ρ < −1/3, to an exterior Schwarzschild vacuum
solution at a junction interface. Several relativistic dark
energy stellar configurations were analyzed by imposing
specific choices for the mass function, by assuming a con-
stant energy density, and a monotonic decreasing energy
density in the star’s interior, respectively. The dynamical
stability of the transition layer of these dark energy stars
to linearized spherically symmetric radial perturbations
about static equilibrium solutions was also considered,
and it was found that large stability regions exist that
are sufficiently close to where the event horizon is ex-
pected to form. Evolving dark energy stars were explored
in [12], where a time-dependent dark energy parameter
was considered. The general properties of a spherically
symmetric body described through the generalized Chap-
lygin equation of state were also extensively analyzed in
[13]. In the context of cosmological equations of state,
in [14] the construction of gravastars supported by a van
der Waals equation of state was studied and their re-
spective characteristics and physical properties were fur-
ther analyzed. It was argued that these van der Waals

quintessence stars may possibly originate from density
fluctuations in the cosmological background. Note that
the van der Waals quintessence equation of state is an
interesting scenario that describes the late universe, and
seems to provide a solution to the puzzle of dark energy,

without the presence of exotic fluids or modifications of
the Friedmann equations.

However, observationally distinguishing between astro-
physical black holes and gravastars is a major challenge
for this latter theoretical model, as in static gravastars
large stability regions exist that are sufficiently close
to the expected position of the event horizon. The
constraints that present-day observations of well-known
black hole candidates place on the gravastar model were
discussed in [15]. The heating of neutron stars via ac-
cretion is well documented by astronomical observations.
A gravastar would acquire most of its mass via accre-
tion, either as part of its birth (e.g., during core collapse
in a supernova explosion followed by the rapid accretion
of a fallback disk), or over an extended period of time
after birth. Similar heating processes have not been ob-
served in the case of black hole candidates. However,
the absence of a detectable heating may also be consis-
tent with a gravastar, if the heat capacity is large enough
that it requires large amounts of heat to produce small
changes in temperature. Nevertheless, some level of ac-
cretion heating is unavoidable, and provides some strong
constraints on the gravastar model. The large surface
redshifts employed in gravastar models implies that the
internal energy generated per unit rest mass accreted is
very nearly c2, and that the radiation emitted from the
surface of the object should be an almost perfect black
body. The energy evolution of an accreting gravastar is
determined by the equation dU/dt = Ṁc2 − L, where

U is the internal energy, Ṁ is the mass accretion rate,
and L is the luminosity. Assuming that the gravastar
is the result of a BEC-like phase transition induced by
strong gravity [10], the gravastar which starts at zero
temperature and rapidly accretes a mass ∆mMSun will
be heated to a temperature as observed at infinity of

Th ≈ 3.1 × 106m−2/3ξ1/3 (∆m/m)1/3 K, where m is the
mass of the gravastar in solar mass units, and ξ = l/lPl is
the length scale in Planck units at which general relativ-
ity fails to adequately describe gravity. In the case of slow
accretion, the temperature is given by the equilibrium

value Teq ≈ 1.7 × 107
(
Ṁ/ṀEdd

)1/4

m−1/4 K, where

ṀEdd = 2.3×10−9mM⊙/yr is the Eddington mass accre-
tion rate. By comparing these theoretical predictions on
the temperature with the upper limits of the temperature
of the black hole candidates, obtained through observa-
tions, one can find some limits on ξ. Two black hole
candidates, known to have extraordinarily low luminosi-
ties, namely, the supermassive black hole in the galactic
center, Sagittarius A*, and the stellar-mass black hole,
XTE J1118 + 480, respectively, were considered in the
analysis [15]. For XTE J1118+480, due to the low mass
and low heat capacity, the value of ξ is constrained to
ξ ≈ 5 × 103, while for Sagittarius A* values for ξ in the
range 104 and 1011 are excluded. Therefore the length
scale for the considered gravastar models must be sub-
Planckian. Thus, if any significant fraction of the mass of
the gravastars is due to accretion, we should see the ther-
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mal emission associated with that phase, which is ruled
out for Sagittarius A* and XTE J1118 + 480.

The question of whether gravastars can be distin-
guished from black holes at all was also considered, from
a theoretical point of view, in [16], where two basic ques-
tions analyzed were: (i) Is a gravastar stable against
generic perturbations and, (ii) if it is stable, can an ob-
server distinguish it from a black hole of the same mass?
A general class of gravastars was constructed, and the
equilibrium conditions in order to exist as solutions of
the Einstein equations were obtained. It was found that
gravastars are stable to axial perturbations, and that
their quasi-normal modes differ from those of a black hole
of the same mass. Thus, these modes can be used to dis-
cern, beyond dispute, a gravastar from a black hole. The
formation hysteresis effects were ignored in this study.
In addition to this, sharp analytic bounds on the surface
compactness 2m/r that follow from the requirement that
the dominant energy condition (DEC) holds at the shell
were derived in [17]. In the case of a Schwarzschild exte-
rior, the highest surface compactness is achieved with the
stiff shell in the limit of vanishing (dark) energy density in
the interior. In the case of a Schwarzschild-de Sitter ex-
terior, it was shown that gravastar configurations with a
surface pressure and with a vanishing shell pressure (dust
shells), are allowed by the DEC. The causality require-
ment (sound speed not exceeding that of light) further
restricts the space of allowed gravastar configurations.

The ergoregion instability is known to affect very com-
pact objects that rotate very rapidly, and that do not
possess an horizon. A detailed analysis on the relevance
of the ergoregion instability for the viability of gravas-
tars was presented in [18, 19]. In [18], it was shown that
ultra-compact objects with high redshift at their surface
are unstable when rapidly spinning, which strengthens
the role of black holes as candidates for astrophysical
observations of rapidly spinning compact objects. In
particular, analytical and numerical results indicate that
gravastars are unstable against scalar field perturbations.
Their instability timescale is many orders of magnitude
stronger than the instability timescale for ordinary stars
with uniform density. In the large l = m approximation,
suitable for a WKB treatment, gravitational and scalar
perturbations have similar instability timescales. In the
low-m regime gravitational perturbations are expected to
have shorter instability timescales than scalar perturba-
tions. In [19], the analysis shows that not all rotating
gravastars are unstable, and stable models can be con-
structed also with J/M2 ∼ 1, where J and M are the an-
gular momentum and mass of the gravastar, respectively.
Therefore, the existence of gravastars cannot be ruled
out by invoking the ergoregion instability. The gravas-
tar model was extended by introducing an electrically
charged component in [20], where the Einstein–Maxwell
field equations were solved in the asymptotically de Sit-
ter interior, and a source of the electric field was coupled
to the fluid energy density. Two different solutions that
satisfy the dominant energy condition were given, and

the equation of state, the speed of sound and the surface
redshift were calculated for both models. The dipolar
magnetic field configuration for gravastars was studied
in [21], and solutions of Maxwell equations in the inter-
nal background spacetime of a slowly rotating gravastar
were obtained. The shell of the gravastar where the mag-
netic field penetrated was modeled as a sphere consisting
of a highly magnetized perfect fluid, with infinite con-
ductivity. It was assumed that the dipolar magnetic field
of the gravastar is produced by a circular current loop
symmetrically placed at radius a at the equatorial plane.

The mass accretion around rotating black holes was
studied in general relativity for the first time in [22]. By
using an equatorial approximation to the stationary and
axisymmetric spacetime of rotating black holes, steady-
state thin disk models were constructed, extending the
theory of non-relativistic accretion [23]. In these mod-
els hydrodynamical equilibrium is maintained by efficient
cooling mechanisms via radiation transport, and the ac-
creting matter has a Keplerian rotation. The radiation
emitted by the disk surface was also studied under the
assumption that black body radiation would emerge from
the disk in thermodynamical equilibrium. The radiation
properties of thin accretion disks were further analyzed in
[24, 25], where the effects of photon capture by the hole
on the spin evolution were presented as well. In these
works the efficiency with which black holes convert rest
mass into outgoing radiation in the accretion process was
also computed. More recently, the emissivity properties
of the accretion disks were investigated for exotic cen-
tral objects, such as wormholes [26], and non-rotating or
rotating quark, boson or fermion stars and brane-world
black holes [27, 28, 29, 30, 31, 32]. The radiation power
per unit area, the temperature of the disk and the spec-
trum of the emitted radiation were given, and compared
with the case of a Schwarzschild black hole of an equal
mass. The physical properties of matter forming a thin
accretion disk in the static and spherically symmetric
spacetime metric of vacuum f(R) modified gravity mod-
els were also analyzed [33], and it was shown that partic-
ular signatures can appear in the electromagnetic spec-
trum, thus leading to the possibility of directly testing
modified gravity models by using astrophysical observa-
tions of the emission spectra from accretion disks.

It is the purpose of the present paper to consider
another observational possibility that may distinguish
gravastars from black holes, namely, the study of the
properties of the thin accretion disks around rotating
gravastars and black holes, respectively. Thus, we con-
sider a comparative study of the thin accretion disks
around slowly rotating gravastars and black holes, respec-
tively. In particular, we consider the basic physical pa-
rameters describing the disks, such as the emitted energy
flux, the temperature distribution on the surface of the
disk, as well as the spectrum of the emitted equilibrium
radiation. Due to the differences in the exterior geome-
try, the thermodynamic and electromagnetic properties
of the disks (energy flux, temperature distribution and
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equilibrium radiation spectrum) are different for these
two classes of compact objects, thus giving clear obser-
vational signatures, which may allow to discriminate, at
least in principle, gravastars from black holes. We would
like to point out that the proposed method for the detec-
tion of the gravastars by studying accretion disks is an
indirect method, which must be complemented by direct

methods of observation of the surface of the considered
compact objects.

The present paper is organized as follows. In Sec. II,
we present the fundamental field equations for static and
slowly rotating gravastar models. In Sec. III, we review
the formalism and the physical properties of the thin
disk accretion onto compact objects, for stationary ax-
isymmetric spacetimes. In Sec. IV, we analyze the basic
properties of matter forming a thin accretion disk around
slowly rotating gravastar spacetimes. We discuss and
conclude our results in Sec. V. Throughout this work,
we use a system of units so that c = G = h̄ = kB = 1,
where kB is Boltzmann’s constant.

II. SLOWLY ROTATING GRAVASTAR AND

KERR BLACK HOLES

In order to construct slowly rotating gravastar mod-
els we first consider the static case. Then, by assuming
that rotation represents a second order perturbation of
the static case, a slowly rotating gravastar model can be
constructed.

A. Static gravastar models

1. Equations of structure

For a static general relativistic spherically symmetric
matter configuration, the interior line element can be
taken generally as

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (1)

We assume that the star consists of an anisotropic fluid
distribution of matter, and is given by

Tµν = (ρ + p⊥)Uµ Uν + p⊥ gµν + (pr − p⊥)χµχν , (2)

where Uµ is the four-velocity, χµ is the unit spacelike
vector in the radial direction, i.e., χµ = e−λ(r)/2 δµ

r.
ρ(r) is the energy density, pr(r) is the radial pressure
measured in the direction of χµ, and p⊥(r) is the trans-
verse pressure measured in the orthogonal direction to
χµ. Taking into account the above considerations, the
stress-energy tensor is given by the following profile:
T µ

ν = diag[−ρ(r), pr(r), p⊥(r), p⊥(r)].
We suppose that inside the star pr 6= p⊥, ∀r 6= 0, and

define the anisotropy parameter as ∆ = p⊥ − pr, where
∆ is a measure of the deviations from isotropy. If ∆ >
0, ∀r 6= 0 the body is tangential pressure dominated while

∆ < 0 indicates that pr > p⊥. Note that ∆/r represents
a force due to the anisotropic nature of the stellar model,
which is repulsive, i.e., being outward directed if p⊥ > pr,
and attractive if p⊥ < pr.

The properties of the anisotropic compact object can
be completely described by the gravitational structure
equations, which are given by:

dm

dr
= 4πρr2, (3)

dpr

dr
= − (ρ + pr)

[
m + 4πr3pr

]

r2
(
1 − 2m

r

) +
2∆

r
, (4)

dν

dr
= − 2

ρ + pr

dpr

dr
+

4∆

r (ρ + pr)
, (5)

where m(r) is the mass inside radius r, and the relation-
ship e−λ(r) = [1 − 2m(r)/r] has been used.

A solution of Eqs. (3)-(5) is possible only when bound-
ary conditions have been imposed. As in the isotropic
case we require that the interior of any matter distribu-
tion be free of singularities, which imposes the condition
m(r) → 0 as r → 0. Assuming that pr is finite at r = 0,
we have ν′ → 0 as r → 0. Therefore the gradient dpr/dr
will be finite at r = 0 only if ∆ vanishes at least as rapidly
as r when r → 0. This requires that the anisotropy pa-
rameter satisfies the boundary condition

lim
r→0

∆(r)

r
= 0. (6)

At the center of the star the other boundary conditions
for Eqs. (3)-(5) are pr(0) = p⊥(0) = pc and ρ(0) = ρc,
where ρc and pc are the central density and pressure,
respectively. The radius a of the star is determined by
the boundary condition pr (a) = 0. We do not neces-
sarily require that the tangential pressure p⊥ vanishes
for r = a. Therefore at the surface of the star the
anisotropy parameter satisfies the boundary condition
∆(a) = p⊥(a) − pr(a) = p⊥(a) ≥ 0. To close the field
equations the equations of state of the radial pressure
pr = pr (ρ) and of the tangential pressure p⊥ = p⊥ (ρ)
must also be given. To be a gravastar model, we need to
impose the equation of state pr = −ρ, so that from the
field equations one easily deduces that

ν(r) = −λ(r) = ln

[
1 − 2m(r)

r

]
, (7)

where m(r) is the mass function.

2. Junction interface

We consider models of gravastars by matching an inte-
rior solution, governed by an equation of state, pr = −ρ,
to an exterior Schwarzschild vacuum solution with p =
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ρ = 0, at a junction interface Σ, with junction radius a.
The Schwarzschild metric is given by

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2 dΩ2 ,

(8)
which possesses an event horizon at rb = 2M , and dΩ2 =
dθ2 +sin2 θ dϕ2. To avoid the event horizon, the junction
radius lies outside 2M , i.e., a > 2M . We show below
that M , in this context, may be interpreted as the total
mass of the gravastar.

Using the Darmois-Israel formalism [34], the surface
stresses of the thin shell are given by [11]

σ = − 1
4πa

(√
1 − 2M

a + ȧ2 −
√

1 − 2m
a + ȧ2

)
, (9)

P = 1
8πa

(
1−M

a
+ȧ2+aä√

1− 2M
a

+ȧ2
− 1−m′−m

a
+ȧ2+aä√

1− 2m
a

+ȧ2

)
, (10)

where the overdot denotes a derivative with respect to
proper time, τ . σ and P are the surface energy density
and the tangential pressure, respectively [11]. The dy-
namical stability of the transition layer of these compact
spheres to linearized spherically symmetric radial pertur-
bations about static equilibrium solutions was explored
using Eqs. (9)-(10) (see [11] for details). Large stability
regions were found that exist sufficiently close to where
the event horizon is expected to form, so that it would
be difficult to distinguish the exterior geometry of these
gravastars from astrophysical black holes.

The surface mass of the thin shell is given by ms =
4πa2σ. By rearranging Eq. (9), evaluated at a static
solution a0, i.e., ȧ = ä = 0, one obtains the total mass of
the gravastar, given by

M = m(a0)+ms(a0)




√

1 − 2m(a0)

a0
− ms(a0)

2a0



 . (11)

3. Specific model: Tolman-Matese-Whitman mass function

To gain insight into the problem, it is interesting to
present a specific example. For instance, consider the
following choice for the mass function, given by

m(r) =
b0r

3

2(1 + 2b0r2)
, (12)

where b0 is a non-negative constant, which was exten-
sively analyzed in [11] in the context of dark energy stars.
The latter may be determined from the regularity con-
ditions and the finite character of the energy density at
the origin r = 0, and is given by b0 = 8πρc/3, where ρc

is the energy density at r = 0.

This choice of the mass function represents a mono-
tonic decreasing energy density in the star interior, and
was used previously in the analysis of isotropic fluid
spheres by Matese and Whitman [35] as a specific case
of the Tolman type−IV solution [36], and later by Finch
and Skea [37]. Anisotropic stellar models, with the re-
spective astrophysical applications, were also extensively
analyzed in Refs. [38], by considering a specific case of
the Matese-Whitman mass function. The numerical re-
sults outlined show that the basic physical parameters,
such as the mass and radius, of the model can describe
realistic astrophysical objects such as neutron stars [38].

The spacetime metric for this solution is provided by

ds2 = −
(

1+b0r2

1+2b0r2

)
dt2 +

(
1+2b0r2

1+b0r2

)
dr2 + r2 dΩ2 .(13)

The stress-energy tensor components are given by

pr = −ρ = −
(

b0

8π

) (
3 + 2b0r

2
)

(1 + 2b0r2)2

p⊥ = −
(

b0

8π

)
(3 + 2b0r

2)

(1 + 2b0r2)2
+

(
b2
0r

2

4π

)
(5 + 2b0r

2)

(1 + 2b0r2)3
.

The anisotropy factor takes the following form

∆ =

(
b2
0r

2

4π

)
(5 + 2b0r

2)

(1 + 2b0r2)3
, (14)

which is always positive, implying that p⊥ > pr, and
∆|r=0 = 0 at the center, i.e., p⊥(0) = pr(0), as expected.

B. Slowly rotating gravastars

When the equilibrium configuration described in Sec.
II A 1 is set into slow rotation, the geometry of spacetime
around it and its interior distribution of stress-energy are
changed. With an appropriate change of coordinates, the
perturbed geometry is described by [39, 40]

ds2 = −eνrot(r) {1 + 2 [h0 + h2P2 (cos θ)]} dt2 +
1 + 2 [m0 + m2P2 (cos θ)] / (r − 2M)

1 − 2M/r
dr2 +

r2 [1 + 2 (v2 − h2)P2 (cos θ)]
[
dθ2 + sin2 θ (dϕ − ωdt)2

]
+ O

(
Ω3

S

)
. (15)

Here, P2 (cos θ) =
(
3 cos2 θ − 1

)
/2 is the Legendre polynomial of order two; the angular velocity, ω, of the local

inertial frame, is a function of the radial coordinate r, and is proportional to the star’s angular velocity ΩS ; and h0,
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h2, m0, m2, v2 are functions of r that are proportional to Ω2
S . Outside the star the metric can be written as [40]

ds2 = −
(

1 − 2M

r
+ 2

J2

r4

){
1 + 2

[
J2

Mr3

(
1 +

M

r

)
+

5

8

Q − J2/M

M3
Q2

2 (χ)

]
P2 (cos θ)

}
dt2

+

(
1 − 2M

r
+ 2

J2

r4

)−1{
1 − 2

[
J2

Mr3

(
1 − 5M

r

)
+

5

8

Q − J2/M

M3
Q2

2 (χ)

]
P2 (cos θ)

}
dr2

+r2

{
1 + 2

[
− J2

Mr3

(
1 +

2M

r

)
+

5

8

Q − J2/M

M3

(
2M√

r (r − 2M)
Q1

2 (χ) − Q2
2 (χ)

)]
P2 (cos θ)

}

×
{

dθ2 + sin2 θ

[
dϕ − 2J

r3
dt

]2}
. (16)

In Eq. (16) the variable χ = r/M−1, and the quantities
Q1

2 and Q2
2 denote associated Legendre polynomials of the

second time, so that

Q1
2(χ) =

√
χ2 − 1

[(
3χ2 − 2

)

χ2 − 1
− 3

2
χ ln

χ + 1

χ − 1

]
, (17)

and

Q2
2(χ) =

5χ − 3χ2

(χ2 − 1)
+

3

2

(
χ2 − 1

)
ln

χ + 1

χ − 1
, (18)

respectively. The line element outside the star is deter-
mined by three constants: the total mass of the rotating
star M , the star’s total angular momentum J and the
star’s mass quadrupole moment Q. The quadrupole mo-
ment Q can be expressed in terms of the eccentricity e =√

(re/rp)
2 − 1 of the star as e =

√
3Q/Mr∗2+O

(
1/r∗2

)
,

where r∗ is a large distance from the origin, and re and
rp are the equatorial and polar radius of the star, re-
spectively [40]. The metric given by Eq. (16) is valid
in the case of slow rotation, that is, the angular veloc-
ity of the star ΩS must be small enough so that the
fractional changes in pressure, energy density, and grav-
itational field, due to rotation, are all much less than
unity. The condition of slow rotation can be formulated
as Ω2

S ≪ (c/R)
2 (

GM/Rc2
)
, where R is the radius of

the static stellar configuration [39]. The critical angu-
lar velocity at which mass shedding occurs is given by
Ω2

K = GM/R3 [40], and therefore the condition of slow
rotation implies ΩS ≪ ΩK . All models considered in the
present paper satisfy this condition.

The metric given by Eq. (16) is used to determine
the electromagnetic signatures of accretion disks around
slowly rotating gravastars, which is analyzed in detail
below.

C. The Kerr black hole

For self-completeness and self-consistency, we present
the Kerr metric, as it will be compared to metric (16) in
the electromagnetic signature analysis of accretion disks.

The Kerr metric, describing a rotating black hole, is given
in the Boyer-Lyndquist coordinate system by

ds2 = −
(

1 − 2Mr

ΣK

)
dt2 + 2

2Mr

ΣK
a sin2 θdtdφ +

ΣK

∆K
dr2

+ΣKdθ2 +

(
r2 + a2 +

2Mr

ΣK
a2 sin2 θ

)
sin2 θdφ2, (19)

where ΣK = r2 + a2 cos2 θ and ∆K = r2 + a2 − 2mr,
respectively. In the equatorial plane, the metric compo-
nents reduce to

gtt = −
(

1 − 2Mr

ΣK

)
= −

(
1 − 2M

r

)
,

gtφ =
2Mr

ΣK
a sin2 θ = 2

Ma

r
,

grr =
ΣK

∆K
=

r2

∆K
,

gφφ =

(
r2 + a2 +

2Mr

ΣK
a2 sin2 θ

)
sin2 θ

= r2 + a2

(
1 +

2M

r

)
,

respectively. For the Kerr metric J = −Ma and
Q = J2/M , respectively. The latter relationship, i.e.,
Q = J2/M , between the quadrupole momentum and the
angular momentum shows the very special nature of the
Kerr solution.

III. ELECTROMAGNETIC RADIATION

PROPERTIES OF THIN ACCRETION DISKS IN

STATIONARY AXISYMMETRIC SPACETIMES

To set the stage, we present the general formalism
of electromagnetic radiation properties of thin accretion
disks in stationary axisymmetric spacetimes.

A. Stationary and axially symmetric spacetimes

In this work we analyze the physical properties and
characteristics of particles moving in circular orbits
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around general relativistic compact spheres in a station-
ary and axially symmetric geometry given by the follow-
ing metric

ds2 = gtt dt2 + 2gtφ dtdφ + grr dr2 + gθθ dθ2 + gφφ dφ2 .
(20)

Note that the metric functions gtt, gtφ, grr, gθθ and gφφ

only depend on the radial coordinate r in the equatorial
approximation, i.e., |θ − π| ≪ 1, which is the case of
interest here. In the following we denote the square root
of the determinant of the metric tensor by

√−g.
To compute the flux integral given by Eq. (39), we de-

termine the radial dependence of the angular velocity Ω,

of the specific energy Ẽ and of the specific angular mo-

mentum L̃ of particles moving in circular orbits around
compact spheres in a stationary and axially symmetric
geometry through the geodesic equations. The latter take
the following form

dt

dτ
=

Ẽgφφ + L̃gtφ

g2
tφ − gttgφφ

, (21)

dφ

dτ
= − Ẽgtφ + L̃gtt

g2
tφ − gttgφφ

, (22)

grr

(
dr

dτ

)2

= −1 +
Ẽ2gφφ + 2ẼL̃gtφ + L̃2gtt

g2
tφ − gttgφφ

. (23)

One may define an effective potential term defined as

Veff (r) = −1 +
Ẽ2gφφ + 2ẼL̃gtφ + L̃2gtt

g2
tφ − gttgφφ

. (24)

For stable circular orbits in the equatorial plane
the following conditions must hold: Veff (r) = 0 and
Veff, r(r) = 0. These conditions provide the specific en-
ergy, the specific angular momentum and the angular
velocity of particles moving in circular orbits for the case
of spinning general relativistic compact spheres, given by

Ẽ = − gtt + gtφΩ√
−gtt − 2gtφΩ − gφφΩ2

, (25)

L̃ =
gtφ + gφφΩ√

−gtt − 2gtφΩ − gφφΩ2
, (26)

Ω =
dφ

dt
=

−gtφ,r +
√

(gtφ,r)2 − gtt,rgφφ,r

gφφ,r
. (27)

The marginally stable orbit around the central object can
be determined from the condition Veff, rr(r) = 0, which
provides the following important relationship

Ẽ2gφφ,rr + 2ẼL̃gtφ,rr + L̃2gtt,rr − (g2
tφ − gttgφφ),rr = 0.

(28)

By inserting Eqs. (25)-(27) into Eq. (28) and solving this
equation for r, we obtain the marginally stable orbit for
the explicitly given metric coefficients gtt, gtφ and gφφ.

For a Kerr black hole the geodesic equation (23) for r
becomes

r2

∆K

(
dr

dτ

)2

= Veff (r) (29)

with the effective potential given by

Veff (r) = −1 +
{
Ẽ2
[
r2(r2 + a2) + 2ma2r

]

+4ẼL̃mar − L̃2
(
r2 − 2mr

)}/ [
r2
(
r2 − 2mr + a2

)]
.

(30)

Note that these relationships may be rewritten in the
following manner

r4

(
dr

dτ

)2

= V (r) (31)

with V (r) given by

V (r) = r2∆KVeff (r) = r2(r2 −2mr+a2)Veff (r) . (32)

where the relationship ∆K = g2
tφ−gttgφφ = r2−2mr+a2

along the equatorial plane has been used.

B. Properties of thin accretion disks

For the thin accretion disk, it is assumed that its verti-
cal size is negligible, as compared to its horizontal exten-
sion, i.e, the disk height H , defined by the maximum half
thickness of the disk in the vertical direction, is always
much smaller than the characteristic radius r of the disk,
defined along the horizontal direction, H ≪ r. The thin
disk is in hydrodynamical equilibrium, and the pressure
gradient and a vertical entropy gradient in the accret-
ing matter are negligible. The efficient cooling via the
radiation over the disk surface prevents the disk from cu-
mulating the heat generated by stresses and dynamical
friction. In turn, this equilibrium causes the disk to sta-
bilize its thin vertical size. The thin disk has an inner
edge at the marginally stable orbit of the compact ob-
ject potential, and the accreting plasma has a Keplerian
motion in higher orbits.

In steady state accretion disk models, the mass ac-
cretion rate Ṁ0 is assumed to be a constant that does
not change with time. The physical quantities describ-
ing the orbiting plasma are averaged over a characteristic
time scale, e.g. ∆t, over the azimuthal angle ∆φ = 2π
for a total period of the orbits, and over the height H
[22, 23, 24].

The particles moving in Keplerian orbits around the
compact object with a rotational velocity Ω = dφ/dt have

a specific energy Ẽ and a specific angular momentum L̃,
which, in the steady state thin disk model, depend only
on the radii of the orbits. These particles, orbiting with
the four-velocity uµ, form a disk of an averaged surface
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density Σ, the vertically integrated average of the rest
mass density ρ0 of the plasma. The accreting matter in
the disk is modeled by an anisotropic fluid source, where
the density ρ0 , the energy flow vector qµ and the stress
tensor tµν are measured in the averaged rest-frame (the
specific heat was neglected). Then, the disk structure
can be characterized by the surface density of the disk
[22, 24],

Σ(r) =

∫ H

−H

〈ρ0〉dz, (33)

with averaged rest mass density 〈ρ0〉 over ∆t and 2π and
the torque

Wφ
r =

∫ H

−H

〈tφr〉dz, (34)

with the averaged component 〈trφ〉 over ∆t and 2π. The
time and orbital average of the energy flux vector gives
the radiation flux F(r) over the disk surface as F(r) =
〈qz〉.

The stress-energy tensor is decomposed according to

T µν = ρ0u
µuν + 2u(µqν) + tµν , (35)

where uµqµ = 0, uµtµν = 0. The four-vectors of
the energy and angular momentum flux are defined by
−Eµ ≡ T µ

ν (∂/∂t)ν and Jµ ≡ T µ
ν (∂/∂φ)ν , respectively.

The structure equations of the thin disk can be derived
by integrating the conservation laws of the rest mass, of
the energy, and of the angular momentum of the plasma,
respectively [22, 24]. From the equation of the rest mass
conservation, ∇µ(ρ0u

µ) = 0, it follows that the time aver-
aged rate of the accretion of the rest mass is independent
of the disk radius,

Ṁ0 ≡ −2π
√−gΣur = constant. (36)

The conservation law ∇µEµ = 0 of the energy has the
integral form

[Ṁ0Ẽ − 2π
√−gΩWφ

r],r = 4π
√−gF Ẽ , (37)

which states that the energy transported by the rest mass

flow, Ṁ0Ẽ, and the energy transported by the dynami-
cal stresses in the disk, 2π

√−gΩWφ
r, is in balance with

the energy radiated away from the surface of the disk,

4π
√−gF Ẽ. The law of the angular momentum conser-

vation, ∇µJµ = 0, also states the balance of these three
forms of the angular momentum transport,

[Ṁ0L̃ − 2πrWφ
r],r = 4π

√−gF L̃ . (38)

By eliminating Wφ
r from Eqs. (37) and (38), and

applying the universal energy-angular momentum rela-
tion dE = ΩdJ for circular geodesic orbits in the form

Ẽ,r = ΩL̃,r, the flux F of the radiant energy over the disk

can be expressed in terms of the specific energy, angu-
lar momentum and of the angular velocity of the central
compact object [22, 24],

F (r) = − Ṁ0

4π
√−g

Ω,r

(Ẽ − ΩL̃)2

∫ r

rms

(Ẽ−ΩL̃)L̃,rdr . (39)

Another important characteristics of the mass accre-
tion process is the efficiency with which the central object
converts rest mass into outgoing radiation. This quan-
tity is defined as the ratio of the rate of the radiation of
energy of photons escaping from the disk surface to infin-
ity, and the rate at which mass-energy is transported to
the central compact general relativistic object, both mea-
sured at infinity [22, 24]. If all the emitted photons can
escape to infinity, the efficiency is given in terms of the
specific energy measured at the marginally stable orbit
rms,

ǫ = 1 − Ẽms. (40)

For Schwarzschild black holes the efficiency ǫ is about
6%, whether the photon capture by the black hole is con-
sidered, or not. Ignoring the capture of radiation by the
hole, ǫ is found to be 42% for rapidly rotating black holes,
whereas the efficiency is 40% with photon capture in the
Kerr potential [25].

The accreting matter in the steady-state thin disk
model is supposed to be in thermodynamical equilibrium.
Therefore the radiation emitted by the disk surface can
be considered as a perfect black body radiation, where
the energy flux is given by F (r) = σSBT 4(r) (σSB is the
Stefan-Boltzmann constant), and the observed luminos-
ity L (ν) has a redshifted black body spectrum [28]:

L (ν) = 4πd2I (ν) =
8

π
cos γ

∫ rf

ri

∫ 2π

0

ν3
erdφdr

exp (νe/T )− 1
.

(41)

Here d is the distance to the source, I(ν) is the Planck
distribution function, γ is the disk inclination angle, and
ri and rf indicate the position of the inner and outer
edge of the disk, respectively. We take ri = rms and
rf → ∞, since we expect the flux over the disk surface
vanishes at r → ∞ for any kind of general relativistic
compact object geometry. The emitted frequency is given
by νe = ν(1+z), where the redshift factor can be written
as

1 + z =
1 + Ωr sin φ sin γ√

−gtt − 2Ωgtφ − Ω2gφφ

(42)

where we have neglected the light bending [41, 42].
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IV. ELECTROMAGNETIC AND

THERMODYNAMIC SIGNATURES OF

ACCRETION DISKS AROUND SLOWLY

ROTATING GRAVASTARS AND BLACK HOLES

A. Electromagnetic and thermodynamic properties

of the disks

In this section we compare the radiation properties of
thin accretion disks around gravastars and black holes in
the slowly rotating case when the spin parameter a∗ =
J/M2 has the maximal value of 0.5. In Fig. 1 we present
the time averaged energy flux F (r) radiated by the disk
for both types of central objects with the total mass M
of 106M⊙ and increasing spin parameter from 0.1 to 0.5.
The quadrupole moment Q of the gravastar models runs
between 0.1M3 and 2M3. Here the mass accretion rate
Ṁ0 is set to 2.5 × 10−5M⊙/yr, which is in the typical
range for super massive cental objects.

If we compare the flux emerging from the surface of the
thin accretion disk around black holes and gravastars,
we find that its maximal value is systematically lower
for gravastars, independently of the values of the spin
parameter or the quadrupole momentum. For very slow
rotation, (a∗ = 0.1), and a relative small value of the
quadrupole moment (Q = 0.1M3), the radial distribution
of the disk radiation is close to each other for the two
types of compact central objects. The maximal flux for
gravastars is roughly 90% of the black hole’s flux, and
the maximum of the inner edge of the accretion disk is
located at somewhat higher radii for gravastars. With
increasing rotational frequency of the central object, the
flux values also increase, but the increment is higher for
black holes than for gravastars. For a∗ = 0.5 the flux
maximum for black holes is almost twice the maximal flux
value for gravastars. The more rapid rotation does not
cause strong effect on the location of the inner disk edge
for gravastars, as we find a slight decrease in the value
of rms as the rotation of central object increases (see in
Tab II). For black holes, the effect of the rotation is also
stronger here. Although the error of the approximation
applied for the slow rotation is rapidly increasing in the
regime around a∗ ∼ 0.5, this picture is still definitely
adequate for lower values of a∗.

The variation of the quadrupole moment causes con-
siderable changes in both the maximal value of disk ra-
diation and the location of the inner edge of the disk.
As we increase Q, the maximal flux decreases and rms

increases. These effects are presented in Fig. 2, show-
ing the disk temperatures, although the differences are
somewhat less striking.

The disk spectra, presented in Fig. 3, have similar fea-
tures in the dependence of the disk radiation on the ro-
tation parameter and the quadrupole momentum. The
amplitudes and the cut-off frequencies of the spectra for
gravastars are always lower than those for black holes.
For higher rotational velocity, the amplitudes are some-
what higher but do not exhibit much change. The cut-off

frequency for black holes increases moderately, whereas
it has only a negligible increment for gravastars. This
makes the differences in the spectral properties more
acute for higher values of the spin parameter (a∗

>∼ 0.3).
The increase in the quadrupole moment somewhat low-
ers the amplitude of the spectra but causes a stronger
decrease in the cut-off frequencies.

B. Conversion efficiency of the accreting mass

We also present the conversion efficiency ǫ of the ac-
creting mass into radiation, measured at infinity, which
is given by Eq. (40), for the case where the photon cap-
ture by the slowly rotating central object is ignored. The
value of ǫ measures the efficiency of energy generating
mechanism by mass accretion. The amount of energy
released by matter leaving the marginally stable orbit,
and falling down the black hole, is the binding energy

Ẽms of the black hole potential. In Tabs. I and II, the
marginally stable orbits rms and ǫ are given for black
holes and gravastars with the parameters a∗ and Q in the
range used for the plots presenting the radiation proper-
ties of the accretion disks.

a∗ rms [M ] ǫ [10−2]

0.1 5.67 6.06

0.2 5.33 6.46

0.3 4.98 6.94

0.4 4.62 7.51

0.5 4.24 8.21

TABLE I: The marginally stable orbit and the efficiency for
slowly rotating Kerr black holes with different spin parame-
ters.

These values demonstrate the variation in the location
of the inner disk edge with the changing spin parame-
ter and quadrupole momentum, as we have seen in the
discussion on the radial distribution of the flux. The
higher these values are, the closer the marginally sta-
ble orbits are to the center in the dimensionless radial
scale. For slowly rotating black holes, the conversion ef-
ficiency is still close to 6%, which is the value obtained
for Schwarzschild black holes. Up to a∗ = 0.5 it increases
to 8%, which is still much lower than the one for extreme
Kerr black holes. For gravastars, ǫ has a smaller vari-
ation, and always remains smaller than the conversion
efficiency for black holes. For very slow rotation, the ef-
ficiency is approximately 5.8%, which is close to the one
for the static black hole, and it decreases to 5% as the
quadrupole moment increases to 2M3. For a higher spin
parameter (a∗ ∼ 0.5), ǫ is still around 6.5% but it be-
comes smaller than 6% as Q increases. We conclude that
the conversation efficiency is higher for more rapidly ro-
tating gravastars, but this is moderated by the increment
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FIG. 1: The energy flux emerging from the accretion disk of slowly rotating gravastars and black holes for the spin parameter
a∗ = 0.1 (upper left hand plot), a∗ = 0.3 (upper right hand plot), a∗ = 0.4 (lower left hand plot), and a∗ = 0.5 for (lower right
hand plot). All the plots are given for the total mass M = 106M⊙, the quadrupole moments Q = 0.1, 0.5, 1.0, 2.0 times M3,
and the mass accretion rate 2.5× 10−5M⊙/yr.
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FIG. 2: The disk temperature of slowly rotating gravastars and black holes for the spin parameter a∗ = 0.1 (upper left hand
plot), a∗ = 0.3 (upper right hand plot), a∗ = 0.4 (lower left hand plot), and a∗ = 0.5 for (lower right hand plot). All the plots
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FIG. 3: The disk spectra of slowly rotating gravastars and black holes for the spin parameter a∗ = 0.1 (upper left hand plot),
a∗ = 0.3 (upper right hand plot), a∗ = 0.4 (lower left hand plot), and a∗ = 0.5 for (lower right hand plot). All the plots are
given for the total mass M = 106M⊙, the quadrupole moments Q = 0.1, 0.5, 1.0, 2.0 times M3, and the mass accretion rate
2.5× 10−5M⊙/yr.

a∗ Q [M3] rms [M ] ǫ [10−2]

0.1 0.1 5.91 5.82

0.1 0.5 6.20 5.60

0.1 1.0 6.50 5.37

0.1 2.0 7.00 5.02

0.2 0.1 5.75 6.00

0.2 0.5 6.05 5.75

0.2 1.0 6.37 5.50

0.2 2.0 6.77 5.23

0.3 0.1 5.58 6.19

0.3 0.5 5.89 5.90

0.3 1.0 6.23 5.63

0.3 2.0 6.89 5.12

0.4 0.1 5.39 6.40

0.4 0.5 5.74 6.08

0.4 1.0 6.09 5.77

0.4 2.0 6.65 5.33

0.5 0.1 5.20 6.64

0.5 0.5 5.58 6.27

0.5 1.0 5.95 5.93

0.5 2.0 6.52 5.45

TABLE II: The marginally stable orbit and the efficiency for
slowly rotating gravastars with different spin parameters and
quadrupole moments.

in its quadrupole moment. In addition to this, it is al-
ways smaller than the ǫ for black holes, i.e., gravastars
provide a less efficient mechanism for converting mass to
radiation than black holes.

In order that our proposal for discriminating gravastars
from black holes by using the electromagnetic emission
properties of accretion disks could be effectively applied
in concrete observational cases, it is necessary to know
at least the value of the mass and of the spin parameter
of the central rotating compact object. To estimate the
spins of stellar-mass black holes in X-ray binaries, one
has to fit the continuum X-ray spectrum of the radia-
tion from the accretion disk, by using the standard thin
disk model, and extract the dimensionless spin parame-
ter a∗ = a/M of the black hole as a parameter of the fit
[44]. Recently, a number of precise black hole spin de-
terminations have been reported. By using Chandra and
Gemini-North observations of the eclipsing X-ray binary
M33 X-7, precise values of the mass of its black hole pri-
mary and of the system’s orbital inclination angle have
been obtained. The distance to the binary is also known
to a few percent. By using these precise results, from the
analysis of 15 Chandra and XMM-Newton X-ray spectra,
and a fully relativistic accretion disk model, one can find
that the dimensionless spin parameter of the black hole
primary is a∗ = 0.77 ± 0.05 [45]. Therefore, even that
presently there are severe observational limitations for
the application of our proposal, with the future improve-



12

ments of the observational techniques, the observation
of the emission spectra of accretion disks could be effec-
tively used to discriminate between gravastars and black
holes.

V. DISCUSSIONS AND FINAL REMARKS

If gravastars are surrounded by a thin shell of mat-
ter, the presence of a turning point for matter (the point
where the motion of the infalling matter suddenly stops)
at the surface of the gravastars may have important as-
trophysical and observational implications. Since the
velocity of the matter at the gravastar surface is zero,
matter can be captured and deposited on the surface of
gravastar.Therefore gravastars may have a gaseous sur-
face, formed from a a thin layer of dense and hot gas.
Moreover, because matter is accreted continuously, the
increase in the size and density of the surface will ignite
some thermonuclear reactions [29]. The ignited reactions
are usually unstable, causing the accreted layer of gas
to burn explosively within a very short period of time.
After the nuclear fuel is consumed, the gravastar reverts
to its accretion phase, until the next thermonuclear in-
stability is triggered. Thus, gravastars may undergo a
semi-regular series of explosions, called type I thermonu-
clear bursts, discovered first for X-ray binaries [46, 47].

The observational signatures indicating the presence
of X-ray bursts from gravastars are similar to those of
standard neutron stars, and are the gravitational redshift
of a surface atomic line, the touchdown luminosity of a
radius-expansion burst, and the apparent surface area
during the cooling phases of the burst [48].

If the thermal radiation with wavelength λe emitted by
the matter at the surface of the gravastar has absorption
or emission features characteristic of atomic transitions,
these features will be detected at infinity at a wavelength
λo, gravitationally redshifted with a value

zgrav =
λo − λe

λe
= e−ν(R)/2 − 1, (43)

where we have assumed, for simplicity, that the gravas-
tar is static, and that the exterior metric can be approx-
imated by the standard Schwarzschild metric, given by
Eq. (8). By assuming a gravastar of mass M = 4×106M⊙

and radius R = 1.4 × 1012 cm, we obtain a surface red-
shift of zgrav = 1.55. The corresponding value of the
redshift for a neutron star with mass M = 2M⊙ and ra-
dius R = 106 cm is zNS = 0.56. Therefore the radiation
coming from the surface of a gravastar may be highly red-
shifted (in standard general relativity the redshift obeys
the constrain z ≤ 2).

Type I X -ray bursts show strong spectroscopic evi-
dence for a rapid expansion of the radius of the X-ray
photosphere. The luminosities of these bursts reach the
Eddington critical luminosity at which the outward radi-
ation force balances gravity, causing the expansion lay-
ers of the star. The touchdown luminosity of radius-

expansion bursts from a given source remain constant
between bursts to within a few percent, giving empirical
verification to the theoretical expectation that the emerg-
ing luminosity is approximately equal to the Eddington
critical luminosity. The Eddington luminosity at infinity
of a gravastar is given by [48]

L∞
E =

4πm0R
2

σ
e−λ deν/2

dr

∣∣∣∣
r=R

, (44)

where m0 is the mass of the particle and σ is the inter-
action cross section. For the gravastar we obtain

L∞
E =

4πm0M

σ

√
1 − 2M

r

∣∣∣∣∣
r=R

. (45)

The ratio of the Eddington luminosities at infinity for
a gravastar with mass of 4×106M⊙ and radius 1.4×1012

cm and a neutron star with mass of 2 solar masses and
radius of 10 km is L∞

Egrav/L∞
ENS = 1.22 × 106. Finally,

we consider the apparent surface area during burst cool-
ing. Observations of the cooling tails of multiple type
I bursts from a single source have shown that the ap-
parent surface area of the emitting region, defined as
S∞ = 4πD2Fc,∞/σSBT 4

c,∞, where Fc,∞ is the measured
flux of the source during the cooling tail of the burst,
Tc,∞ is the measured color temperature of the burst spec-
trum, D is the distance to the source and σSB is the
Stefan-Boltzmann constant, remains approximately con-
stant during each burst, and between bursts from the
same source. The color temperature on the surface of
the compact object Tc,h is related to the color temper-

ature measured at infinity by Tc,h = Tc,∞e−ν(R)/2 [48].
By introducing the color correction factor fc = Tc/Teff ,
where Teff is the effective temperature at the surface, we
obtain

S∞ = 4π
R2

f4
c

[z(R) + 1]2 . (46)

Since the radius of the gravastar as well as its surface
redshift may be very large quantities, the apparent area
of the emitting region as measured at infinity may be also
very large. Hence all the astrophysical quantities related
to the observable properties of the X-ray bursts, origi-
nating at the surface of the gravastar can be calculated,
and have finite values on the surface of the gravastar and
at infinity.

It was argued in [29] that any neutron star, composed
by matter described by a more or less general equation
of state, should experience thermonuclear type I bursts
at appropriate mass accretion rates. The question asked
in [29] is whether an “abnormal” surface may allow such
a behavior. The gravastars may have such a zero veloc-
ity, particle trapping, abnormal surface. The presence
of a material surface located at the “event horizon” im-
plies that energy can be radiated, once matter collides
with that surface. Thus, gravastar models, characterized
by high mass, normal matter crusts/surfaces and type
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I thermonuclear bursts can be theoretically constructed.
Moreover, some of the so-called SXT’s (soft X-ray tran-
sients), having a relatively low mass function (e.g. SXT
A0620-00, with a mass function f(M) ≥ 3M⊙ [29]), but
still exceeding the equilibrium limit of 3M⊙, or very mas-
sive neutron stars showing the presence of a crust, may
in fact be gravastars.

It is generally expected that most of the astrophysical
objects grow substantially in mass via accretion. Re-
cent observations suggest that around most of the active
galactic nuclei (AGN’s) or black hole candidates there
exist gas clouds surrounding the central far object, and
an associated accretion disk, on a variety of scales from
a tenth of a parsec to a few hundred parsecs [43]. These
clouds are assumed to form a geometrically and optically
thick torus (or warped disk), which absorbs most of the
ultraviolet radiation and the soft x-rays. The gas exists in
either the molecular or the atomic phase. Evidence for
the existence of super massive black holes comes from
the very long baseline interferometry (VLBI) imaging of
molecular H2O masers in active galaxies, like NGC 4258
[49], and from the astrometric and radial velocity mea-
surements of the fully unconstrained Keplerian orbits for
short period stars around the supermassive black hole at
the center of our galaxy [50, 51]. The VLBI imaging,
produced by Doppler shift measurements assuming Kep-
lerian motion of the masering source, has allowed a quite
accurate estimation of the central mass, which has been
found to be a 3.6 × 107M⊙ super massive dark object,
within 0.13 parsecs. Hence, important astrophysical in-
formation can be obtained from the observation of the
motion of the gas streams in the gravitational field of
compact objects.

Therefore the study of the accretion processes by com-
pact objects is a powerful indicator of their physical na-
ture. However, up to now, the observational results have
confirmed the predictions of general relativity mainly in
a qualitative way. With the present observational preci-
sion one cannot distinguish between the different classes
of compact/exotic objects that appear in the theoreti-
cal framework of general relativity [29]. However, with
important technological developments one may allow to
image black holes and other compact objects directly [52].
Recent observations at a wavelength of 1.3 mm have set a
size of microarcseconds on the intrinsic diameter of SgrA*
[53]. This is less than the expected apparent size of the
event horizon of the presumed black hole, thus suggest-
ing that the bulk of SgrA* emission may not be centered
on the black hole, but arises in the surrounding accre-
tion flow. A model in which Sgr A* is a compact object
with a thermally emitting surface was considered in [54].
Given the very low quiescent luminosity of Sgr A* in
the near-infrared, the existence of a hard surface, even
in the limit in which the radius approaches the hori-
zon, places a severe constraint on the steady mass ac-
cretion rate onto the source: Ṁ ≤ 10−12M⊙/yr. This
limit is well below the minimum accretion rate needed
to power the observed submillimeter luminosity of Sgr

A*: Ṁ > 10−10M⊙/yr. Thus it follows that Sgr A*
does not have a surface, i.e., that it must have an event
horizon. This argument could be made more restrictive
by an order of magnitude with microarcsecond resolution
imaging, e.g., with submillimeter very long baseline inter-
ferometry. Submilliarcsecond astrometry and imaging of
the black hole Sgr A* at the Galactic Centre may become
possible in the near future at infrared and submillimetre
wavelengths [55]. The expected images and light curves,
including polarization, associated with a compact emis-
sion region orbiting the central black hole were computed
in [56]. From spot images and light curves of the observed
flux and polarization it is possible to extract the black
hole mass and spin. At radio wavelengths, disc opacity
produces significant departures from the infrared behav-
ior, but there are still generic signatures of the black hole
properties. Detailed comparison of these results with fu-
ture data can be used to test general relativity, and to
improve existing models for the accretion flow in the im-
mediate vicinity of the black hole.

With the improvement of the imaging observational
techniques, it will also be possible to provide clear obser-
vational evidence for the existence of gravastars, and to
differentiate them from other types of compact general
relativistic objects. Indeed, in this work we have shown
that the thermodynamic and electromagnetic properties
of the disks (energy flux, temperature distribution and
equilibrium radiation spectrum) are different for these
two classes of compact objects, consequently giving clear
observational signatures. More specifically, comparing
the energy flux emerging from the surface of the thin ac-
cretion disk around black holes and gravastars of similar
masses, it was found that its maximal value is system-
atically lower for gravastars, independently of the val-
ues of the spin parameter or the quadrupole momentum.
These effects are confirmed from the analysis of the disk
temperatures and disk spectra. In addition to this, it is
also shown that the conversion efficiency of the accreting
mass into radiation is always smaller than the conversion
efficiency for black holes, i.e., gravastars provide a less ef-
ficient mechanism for converting mass to radiation than
black holes. Thus, these observational signatures may
provide the possibility of clearly distinguishing rotating
gravastars from Kerr-type black holes.
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