42 research outputs found

    An early chondrichthyan and the evolutionary assembly of a shark body plan

    Get PDF
    Although relationships among the major groups of living gnathostomes are well established, the relatedness of early jawed vertebrates to modern clades is intensely debated. Here, we provide a new description of Gladbachus , a Middle Devonian (Givetian approx. 385-million-year-old) stem chondrichthyan from Germany, and one of the very few early chondrichthyans in which substantial portions of the endoskeleton are preserved. Tomographic and histological techniques reveal new details of the gill skeleton, hyoid arch and jaws, neurocranium, cartilage, scales and teeth. Despite many features resembling placoderm or osteichthyan conditions, phylogenetic analysis confirms Gladbachus as a stem chondrichthyan and corroborates hypotheses that all acanthodians are stem chondrichthyans. The unfamiliar character combination displayed by Gladbachus , alongside conditions observed in acanthodians, implies that pre-Devonian stem chondrichthyans are severely under-sampled and strongly supports indications from isolated scales that the gnathostome crown group originated at the latest by the early Silurian (approx. 440 Ma). Moreover, phylogenetic results highlight the likely convergent evolution of conventional chondrichthyan conditions among earliest members of this primary gnathostome division, while skeletal morphology points towards the likely suspension feeding habits of Gladbachus , suggesting a functional origin of the gill slit condition characteristic of the vast majority of living and fossil chondrichthyans. </jats:p

    Complex body size trends in the evolution of sloths (Xenarthra: Pilosa)

    Get PDF
    Background Extant sloths present an evolutionary conundrum in that the two living genera are superficially similar (small-bodied, folivorous, arboreal) but diverged from one another approximately 30 million years ago and are phylogenetically separated by a radiation of medium to massive, mainly ground-dwelling, taxa. Indeed, the species in the two living genera are among the smallest, and perhaps most unusual, of the 50+ known sloth species, and must have independently and convergently evolved small size and arboreality. In order to accurately reconstruct sloth evolution, it is critical to incorporate their extinct diversity in analyses. Here, we used a dataset of 57 species of living and fossil sloths to examine changes in body mass mean and variance through their evolution, employing a general time-variable model that allows for analysis of evolutionary trends in continuous characters within clades lacking fully-resolved phylogenies, such as sloths. Results Our analyses supported eight models, all of which partition sloths into multiple subgroups, suggesting distinct modes of body size evolution among the major sloth lineages. Model-averaged parameter values supported trended walks in most clades, with estimated rates of body mass change ranging as high as 126 kg/million years for the giant ground sloth clades Megatheriidae and Nothrotheriidae. Inclusion of living sloth species in the analyses weakened reconstructed rates for their respective groups, with estimated rates for Megalonychidae (large to giant ground sloths and the extant two-toed sloth) were four times higher when the extant genus Choloepus was excluded. Conclusions Analyses based on extant taxa alone have the potential to oversimplify or misidentify macroevolutionary patterns. This study demonstrates the impact that integration of data from the fossil record can have on reconstructions of character evolution and establishes that body size evolution in sloths was complex, but dominated by trended walks towards the enormous sizes exhibited in some recently extinct forms

    A symmoriiform chondrichthyan braincase and the origin of chimaeroid fishes

    Get PDF
    Chimaeroid fishes (Holocephali) are one of the four principal divisions of modern gnathostomes (jawed vertebrates). Despite only 47 described living species1, chimaeroids are the focus of resurgent interest as potential archives of genomic data2 and for the unique perspective they provide on chondrichthyan and gnathostome ancestral conditions. Chimaeroids are also noteworthy for their highly derived body plan1,3,4. However, like other living groups with distinctive anatomies5, fossils have been of limited use in unravelling their evolutionary origin, as the earliest recognized examples already exhibit many of the specializations present in modern forms6,7. Here we report the results of a computed tomography analysis of Dwykaselachus, an enigmatic chondrichthyan braincase from the ~280 million year old Karoo sediments of South Africa8. Externally, the braincase is that of a symmoriid shark9,10,11,12,13and is by far the most complete uncrushed example yet discovered. Internally, the morphology exhibits otherwise characteristically chimaeroid specializations, including the otic labyrinth arrangement and the brain space configuration relative to exceptionally large orbits. These results have important implications for our view of modern chondrichthyan origins, add robust structure to the phylogeny of early crown group gnathostomes, reveal preconditions that suggest an initial morpho-functional basis for the derived chimaeroid cranium, and shed new light on the chondrichthyan response to the extinction at the end of the Devonian period

    Data from: Diversity dynamics of mammals in relation to tectonic and climatic history: comparison of three Neogene records from North America

    No full text
    In modern ecosystems, regions of topographic heterogeneity, when compared with nearby topographically homogeneous regions, support high species densities of mammals and other groups. This biogeographic pattern could be explained by either greater diversification rates or greater accommodation of species in topographically complex regions. In this context, we assess the hypothesis that changes in landscape history have stimulated diversification in mammals. Landscape history includes tectonic and climatic processes that influence topographic complexity at regional scales. We evaluated the influence of changes in topographic complexity and climate on origination and extinction rates of rodents, the most diverse clade of mammals. We compared the Neogene records of rodent diversity for three regions in North America. The Columbia Basin of the Pacific Northwest (Region 1) and the northern Rocky Mountains (Region 2) were tectonically active over much of the Cenozoic and are characterized by high topographic complexity today. The northern Great Plains (Region 3) have been tectonically quiescent, with low relief, throughout the Cenozoic. These three regions have distinctive geologic histories and substantial fossil records. All three regions showed significant changes in diversification and faunal composition over the Neogene. In the montane regions, originations and extinctions peaked at the onset and close, respectively, of the Miocene Climatic Optimum (17ā€“14 Ma), with significant changes in faunal composition accompanying these episodes of diversification. In the Great Plains, rodents showed considerable turnover but infrequent diversification. Peak Neogene diversity in the Great Plains occurred during cooling after the Miocene Climatic Optimum. These histories suggest that climatic changes interacting with increasing topographic complexity intensify macroevolutionary processes. In addition, close tracking of diversity and fossil productivity with the stratigraphic record suggests either large-scale sampling biases or the mutual response of diversity and depositional processes to changes in landscape history

    OR sequence data

    No full text
    OR Sequence data for Alligator mississippiensis generated using the olfactory receptor assigne

    Supplementary_Tables

    No full text
    All Supplementary tables for this stud

    Data from: Olfactory receptor repertoire size in dinosaurs

    No full text
    The olfactory bulb (OB) ratio is the size of the olfactory bulb relative to the cerebral hemisphere, and is used to estimate the proportion of the forebrain devoted to smell. In birds, OB ratio correlates with the number of olfactory receptor (OR) genes and therefore has been used as a proxy for olfactory acuity. By coupling OB ratios with known OR gene repertoires in birds, we infer minimum repertoire sizes for extinct taxa, including non-avian dinosaurs, using phylogenetic modeling, ancestral state reconstruction and comparative genomics. We highlight a shift in the scaling of OB ratio to body size along the lineage leading to modern birds, demonstrating variable OR repertoires present in different dinosaur and crown-bird lineages, with varying factors potentially influencing sensory evolution in theropods. We investigate the ancestral sensory space available to extinct taxa, highlighting potential adaptations to ecological niches. Through combining morphological and genomic data, we show that, while genetic information for extinct taxa is forever lost, it is potentially feasible to investigate evolutionary trajectories in extinct genomes

    AllSupplementaryFigures

    No full text
    All Supplementary Figures relating to the publicatio

    Badgley Finarelli.Suppl Text Figures

    No full text
    In this file, we describe a subsampling procedure and present two figures (Figs S1, S2) that depict the results of the subsampling method. Data analyzed are summarized in the supplementary tables in a separate file

    Morphological change in cranial shape following the transition to agriculture across western Eurasia

    No full text
    The Neolithic transition brought about fundamental social, dietary and behavioural changes in human populations, which, in turn, impacted skeletal morphology. Crania are shaped through diverse genetic, ontogenetic and environmental factors, reflecting various elements of an individualā€™s life. To determine the transitionā€™s effect on cranial morphology, we investigated its potential impact on the face and vault, two elements potentially responding to different influences. Three datasets from geographically distant regions (Ukraine, Iberia, and the Levant plus Anatolia) were analysed. Craniometric measurements were used to compare the morphology of pre-transition populations with that of agricultural populations. The Neolithic transition corresponds to a statistically significant increase only in cranial breadth of the Ukrainian vaults, while facial morphology shows no consistent transformations, despite expected changes related to the modification of masticatory behaviour. The broadening of Ukrainian vaults may be attributable to dietary and/or social changes. However, the lack of change observed in the other geographical regions and the lack of consistent change in facial morphology are surprising. Although the transition from foraging to farming is a process that took place repeatedly across the globe, different characteristics of transitions seem responsible for idiosyncratic responses in cranial morphology.European Research CouncilIrish Research Counci
    corecore