2,016 research outputs found

    An Evaluation Schema for the Ethical Use of Autonomous Robotic Systems in Security Applications

    Get PDF
    We propose a multi-step evaluation schema designed to help procurement agencies and others to examine the ethical dimensions of autonomous systems to be applied in the security sector, including autonomous weapons systems

    Entangled photon pairs from a quantum dot cascade decay: the effect of time-reordering

    Full text link
    Coulomb interactions between confined carriers remove degeneracies in the excitation spectra of quantum dots. This provides a which path information in the cascade decay of biexcitons, thus spoiling the energy-polarization entanglement of the emitted photon pairs. We theoretically analyze a strategy of color coincidence across generation (AG), recently proposed as an alternative to the previous, within generation (WG) approach. We simulate the system dynamics and compute the correlation functions within the density-matrix formalism. This allows to estimate quantities that are accessible by a polarization-tomography experiment, and that enter the expression of the two-photon concurrence. We identify the optimum parameters within the AG approach, and the corresponding maximum values of the concurrence

    Microscopic construction of the chiral Luttinger liquid theory of the quantum Hall edge

    Full text link
    We give a microscopic derivation of the chiral Luttinger liquid theory for the Laughlin states. Starting from the wave function describing an arbitrary incompressibly deformed Laughlin state (IDLS) we quantize these deformations. In this way we obtain the low-energy projections of local microscopic operators and derive the quantum field theory of edge excitations directly from quantum mechanics of electrons. This shows that to describe experimental and numeric deviations from chiral Luttinger liquid theory one needs to go beyond Laughlin's approximation. We show that in the large N limit the IDLS is described by the dispersionless Toda hierarchy.Comment: 5 pages, revtex, several clarifying comments adde

    Three-Dimensional Velocity Measurements Around and Downstream of a Rotating Vertical Axis Wind Turbine

    Get PDF
    Modern designs for straight-bladed vertical axis wind turbines (VAWTs) feature smaller individual footprints than conventional horizontal axis wind turbines (HAWTs), allowing closer spacing of turbines and potentially greater power extraction for the same wind farm footprint. However, the wakes of upstream turbines could persist far enough to affect the performance of closely-spaced downstream turbines. In order to optimize the inter-turbine spacing and to investigate the potential for constructive aerodynamic interactions, the complex dynamics of VAWT wakes should be understood. The full three-component mean velocity field around and downstream of a scaled model of a rotating VAWT has been measured by Magnetic Resonance Velocimetry (MRV). The model turbine has an aspect ratio (height/diameter) of 1, and was operated in a water facility at subscale but still turbulent Reynolds number of 11,600 based on the turbine diameter. The main flow features including recirculation bubble sizes and strong vortex structures are believed to be representative of flow at full scale Reynolds number. To have kinematic similarity with a power-producing turbine, the model turbine was externally driven. Measurements were taken with the turbine stationary and while driven at tip speed ratios (TSRs) of 1.25 and 2.5, realistic values for VAWTs in operation. The MRV measurement produced three-dimensional velocity data with a resolution of 1/50 of the turbine diameter in all three directions. The flow is shown to be highly three dimensional and asymmetric for the entirety of the investigated region (up to 7 diameters downstream of the turbine). The higher TSR produced greater velocity defect and asymmetry in the near wake behind the turbine, but also showed faster wake recovery than the slower TSR and stationary cases. Wake recovery is affected by a counter-rotating vortex pair generated at the upwind-turning side of the turbine, which mixes faster fluid from the free stream in with the wake. The strength of vortices is shown to increase with TSR

    A reservoir for inverse power law decoherence of a qubit

    Full text link
    The exact dynamics of a Jaynes-Cummings model for a qubit interacting with a continuous distribution of bosons, characterized by a special form of the spectral density, is evaluated analytically. The special reservoir is designed to induce anomalous decoherence, resulting in an inverse power law relaxation, of power 3/2, over an evaluated long time scale. If compared to the exponential-like relaxation obtained from the original Jaynes-Cummings model for Lorentzian-type spectral density functions, decoherence is strongly suppressed. The special reservoir exhibits an upper band edge frequency coinciding with the qubit transition frequency. Known theoretical models of photonic band gap media suitable for the realization of the designed reservoir are proposed.Comment: 5 pages, 2 figure

    Nano dust impacts on spacecraft and boom antenna charging

    Full text link
    High rate sampling detectors measuring the potential difference between the main body and boom antennas of interplanetary spacecraft have been shown to be efficient means to measure the voltage pulses induced by nano dust impacts on the spacecraft body itself (see Meyer-Vernet et al, Solar Phys. 256, 463 (2009)). However, rough estimates of the free charge liberated in post impact expanding plasma cloud indicate that the cloud's own internal electrostatic field is too weak to account for measured pulses as the ones from the TDS instrument on the STEREO spacecraft frequently exceeding 0.1 V/m. In this paper we argue that the detected pulses are not a direct measure of the potential structure of the plasma cloud, but are rather the consequence of a transitional interruption of the photoelectron return current towards the portion of the antenna located within the expanding cloud

    Alpha-particle clustering in excited expanding self-conjugate nuclei

    Full text link
    The fragmentation of quasi-projectiles from the nuclear reaction 40Ca + 12C at 25 MeV/nucleon was used to produce alpha-emission sources. From a careful selection of these sources provided by a complete detection and from comparisons with models of sequential and simultaneous decays, strong indications in favour of α\alpha-particle clustering in excited 16O, 20Ne and 24}Mg are reported.Comment: 8 pages, 4 figures, 12th International Conference on Nucleus-Nucleus collisions (NN2015), 21-26 June 2015, Catania, Ital
    corecore