122 research outputs found

    Absorption of scalars by nonextremal charged black holes in string theory

    Get PDF
    We analyze the low frequency absorption cross section of minimally coupled massless scalar fields by different kinds of charged static black holes in string theory, namely the D1–D5 system in d=5 and a four dimensional dyonic four-charged black hole. In each case we show that this cross section always has the form of some parameter of the solution divided by the black hole Hawking temperature. We also verify in each case that, despite its explicit temperature dependence, such quotient is finite in the extremal limit, giving a well defined cross section. We show that this precise explicit temperature dependence also arises in the same cross section for black holes with string \alpha' corrections: it is actually induced by them.This work has been supported by FEDER funds through Programa Operacional Fatores de Competitividade – COMPETE and by Fundação para a CiĂȘncia e a Tecnologia (FCT) through projects EstC/MAT/UI0013/2011 and CERN/FP/123609/2011

    Origin and history of Phoxinus (Cyprinidae) introductions in the Douro basin (Iberian Peninsula): an update inferred from genetic data

    Get PDF
    The number of non-native freshwater fishes in the Iberian Peninsula has been greatly increasing. In this study, individuals of the genus Phoxinus were detected in 18 out of 138 stream sites sampled across the Douro Basin in 2017 and 2018. A total of 26 individuals were barcoded using partial cytochrome c oxidase subunit I (COI) and cytochrome b (cytb) genes for species identification and determination of geographical origin. Molecular data provided the first record of a second Phoxinus species in western Douro (Portugal, Iberian Peninsula), with haplotypes closely matching those found in the Charente River (southern France). This species is suspected to be a recent introduction associated with the use of minnows as live bait by freshwater anglers, which was facilitated by human movements between France and Portugal. Individuals from watercourses in eastern Douro (Spain) were genetically assigned to Phoxinus bigerri, an introduced species previously known for that region, which confirms reports of introduction events from Ebro to Douro Basin probably also related to freshwater angling and facilitated by geographic proximity. The potential ecological impacts of this genus in the region are unknown and need further investigation.We acknowledge Fernando Teixeira, Fernando Miranda, Mario Ferreira, Sara Carona, Jose Pedro RamiAo and Francisco Carvalho for the valuable assistance during fieldwork. We specially thank Maria Filomena MagalhAes for previous fruitful discussions and logistic support. We are grateful to Matthias F. Geiger and Andrea Corral Lou for facilitating genetic data and coordinates of sampling sites. Finally, we appreciate the comments of the three anonymous reviewers that improved the quality of the manuscript. AFF and AGR were supported by the project FRESHING founded by the Portuguese Foundation for Science and Technology (FCT) and COMPETE (PTDC/AAGMAA/2261/2014 - POCI-01-0145-FEDER-356016824). FMSM was supported by the FCT PhD grant SFRH/BD/104703/2014. This study was conducted as part of the projects FRESHING and FRESHCO. The latter is also supported by FCT and COMPETE (PTDC/AGR-FOR/1627/2014 - 04/SAICT/2015) and UID/AGR/04033/2019. Logistic support was also facilitated by the ENVMETAGEN - Capacity Building at InBIO for Research and Innovation Using Environmental Metagenomics project at CIBIO laboratories (668981; EUH2020-WIDESPREAD-2014-2)

    Lysozyme Resistance in Streptococcus suis Is Highly Variable and Multifactorial

    Get PDF
    Background: Streptococcus suis is an important infectious agent for pigs and occasionally for humans. The host innate immune system plays a key role in preventing and eliminating S. suis infections. One important constituent of the innate immune system is the protein lysozyme, which is present in a variety of body fluids and immune cells. Lysozyme acts as a peptidoglycan degrading enzyme causing bacterial lysis. Several pathogens have developed mechanisms to evade lysozyme-mediated killing. In the present study we compared the lysozyme sensitivity of various S. suis isolates and investigated the molecular basis of lysozyme resistance for this pathogen. Results: The lysozyme minimal inhibitory concentrations of a wide panel of S. suis isolates varied between 0.3 to 10 mg/ml. By inactivating the oatA gene in a serotype 2 and a serotype 9 strain, we showed that OatA-mediated peptidoglycan modification partly contributes to lysozyme resistance. Furthermore, inactivation of the murMN operon provided evidence that additional peptidoglycan crosslinking is not involved in lysozyme resistance in S. suis. Besides a targeted approach, we also used an unbiased approach for identifying factors involved in lysozyme resistance. Based on whole genome comparisons of a lysozyme sensitive strain and selected lysozyme resistant derivatives, we detected several single nucleotide polymorphisms (SNPs) that were correlated with the lysozyme resistance trait. Two SNPs caused defects in protein expression of an autolysin and a capsule sugar transferase. Analysis of specific isogenic mutants, confirmed th

    Effect of chloroquine on gene expression of Plasmodium yoelii nigeriensis during its sporogonic development in the mosquito vector

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The anti-malarial chloroquine can modulate the outcome of infection during the <it>Plasmodium </it>sporogonic development, interfering with <it>Plasmodium </it>gene expression and subsequently, with transmission. The present study sets to identify <it>Plasmodium </it>genes that might be regulated by chloroquine in the mosquito vector.</p> <p>Methods</p> <p>Differential display RT-PCR (DDRT-PCR) was used to identify genes expressed during the sporogonic cycle that are regulated by exposure to chloroquine. <it>Anopheles stephensi </it>mosquitoes were fed on <it>Plasmodium yoelii nigeriensis</it>-infected mice. Three days post-infection, mosquitoes were fed a non-infectious blood meal from mice treated orally with 50 mg/kg chloroquine. Two differentially expressed <it>Plasmodium </it>transcripts (Pyn_chl091 and Pyn_chl055) were further characterized by DNA sequencing and real-time PCR analysis.</p> <p>Results</p> <p>Both transcripts were represented in <it>Plasmodium </it>EST databases, but displayed no homology with any known genes. Pyn_chl091 was upregulated by day 18 post infection when the mosquito had a second blood meal. However, when the effect of chloroquine on that transcript was investigated during the erythrocytic cycle, no significant differences were observed. Although slightly upregulated by chloroquine exposure the expression of Pyn_chl055 was more affected by development, increasing towards the end of the sporogonic cycle. Transcript abundance of Pyn_chl055 was reduced when erythrocytic stages were treated with chloroquine.</p> <p>Conclusion</p> <p>Chloroquine increased parasite load in mosquito salivary glands and interferes with the expression of at least two <it>Plasmodium </it>genes. The transcripts identified contain putative signal peptides and transmembrane domains suggesting that these proteins, due to their location, are targets of chloroquine (not as an antimalarial) probably through cell trafficking and recycling.</p

    Metallothionein in human oesophagus, Barrett's epithelium and adenocarcinoma

    Get PDF
    The potential of the metal-binding protein, metallothionein, in assessing the progression of normal oesophagus through Barrett's to adenocarcinoma was investigated. Metallothionein was quantitatively determined in resected tissues from patients undergoing oesophagectomy for high grade dysplasia/adenocarcinoma and in biopsies from patients with Barrett's syndrome. In 10 cancer patients, metallothionein concentrations in adenocarcinoma were not significantly different from normal oesophagus, although six had elevated metallothionein concentrations in the metaplastic tissue bordering the adenocarcinoma. In 17 out of 20 non-cancer patients with Barrett's epithelium, metallothionein was significantly increased by 108% (P<0.004). There was no association between the metallothionein levels in Barrett's epithelium and the presence of inflammatory cells, metaplasia or dysplasia. Metallothionein is a marker of progression from normal to Barrett's epithelium but is not increased in oesophageal adenocarcinoma

    Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance

    Get PDF
    Many important cellular processes are performed by molecular machines, composed of multiple proteins that physically interact to execute biological functions. An example is the bacterial peptidoglycan (PG) synthesis machine, responsible for the synthesis of the main component of the cell wall and the target of many contemporary antibiotics. One approach for the identification of essential components of a cellular machine involves the determination of its minimal protein composition. Staphylococcus aureus is a Gram-positive pathogen, renowned for its resistance to many commonly used antibiotics and prevalence in hospitals. Its genome encodes a low number of proteins with PG synthesis activity (9 proteins), when compared to other model organisms, and is therefore a good model for the study of a minimal PG synthesis machine. We deleted seven of the nine genes encoding PG synthesis enzymes from the S. aureus genome without affecting normal growth or cell morphology, generating a strain capable of PG biosynthesis catalyzed only by two penicillin-binding proteins, PBP1 and the bi-functional PBP2. However, multiple PBPs are important in clinically relevant environments, as bacteria with a minimal PG synthesis machinery became highly susceptible to cell wall-targeting antibiotics, host lytic enzymes and displayed impaired virulence in a Drosophila infection model which is dependent on the presence of specific peptidoglycan receptor proteins, namely PGRP-SA. The fact that S. aureus can grow and divide with only two active PG synthesizing enzymes shows that most of these enzymes are redundant in vitro and identifies the minimal PG synthesis machinery of S. aureus. However a complex molecular machine is important in environments other than in vitro growth as the expendable PG synthesis enzymes play an important role in the pathogenicity and antibiotic resistance of S. aureus

    P. brasiliensis virulence is affected by SconC, the negative regulator of inorganic sulfur assimilation

    Get PDF
    Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37°C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis.J.F.M. and J.G.R. were supported by a PhD grant from Fundacao para a Ciencia e Tecnologia (FCT). This work was supported by a grant from FCT (PTDC/BIA-MIC/108309/2008). M. Sturme. and M. Saraiva are Ciencia 2008 fellows. The authors would also like to thank FAPESP (Fundacao para Amparo a Pesquisa do Estado de Sao Paulo) and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Restricted by borders: trade-offs in transboundary conservation planning for large river systems

    Get PDF
    Effective conservation of freshwater biodiversity requires accounting for connectivity and the propagation of threats along river networks. With this in mind, the selection of areas to conserve freshwater biodiversity is challenging when rivers cross multiple jurisdictional boundaries. We used systematic conservation planning to identify priority conservation areas for freshwater fish conservation in Hungary (Central Europe). We evaluated the importance of transboundary rivers to achieve conservation goals by systematically deleting some rivers from the prioritization procedure in Marxan and assessing the trade-offs between complexity of conservation recommendations (e.g., conservation areas located exclusively within Hungary vs. transboundary) and cost (area required). We found that including the segments of the largest transboundary rivers (i.e. Danube, Tisza) in the area selection procedure yielded smaller total area compared with the scenarios which considered only smaller national and transboundary rivers. However, analyses which did not consider these large river segments still showed that fish diversity in Hungary can be effectively protected within the country’s borders in a relatively small total area (less than 20 % of the country’s size). Since the protection of large river segments is an unfeasible task, we suggest that transboundary cooperation should focus on the protection of highland riverine habitats (especially Dráva and Ipoly Rivers) and their valuable fish fauna, in addition to the protection of smaller national rivers and streams. Our approach highlights the necessity of examining different options for selecting priority areas for conservation in countries where transboundary river systems form the major part of water resources.Full Tex

    Diagnosis of Hepatozoon canis in young dogs by cytology and PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Hepatozoon canis </it>is a widespread tick-borne protozoan affecting dogs. The diagnosis of <it>H. canis </it>infection is usually performed by cytology of blood or buffy coat smears, but this method may not be sensitive. Our study aimed to evaluate the best method to achieve a parasitological diagnosis of <it>H. canis </it>infection in a population of receptive young dogs, previously negative by cytology and exposed to tick infestation for one summer season.</p> <p>Results</p> <p>A total of 73 mongrel dogs and ten beagles younger than 18 months of age, living in an animal shelter in southern Italy where dogs are highly infested by <it>Rhipicephalus sanguineus</it>, were included in this study. In March-April 2009 and in October 2009, blood and bone marrow were sampled from each dog. Blood, buffy coat and bone marrow were examined by cytology only (at the first sampling) and also by PCR for <it>H. canis </it>(second sampling). In March-April 2009, only one dog was positive for <it>H. canis </it>by cytological examination, whereas in October 2009 (after the summer season), the overall incidence of <it>H. canis </it>infection by cytological examinations was 43.9%. Molecular tests carried out on samples taken in October 2009 showed a considerably higher number of dogs positive by PCR (from 27.7% up to 51.2% on skin and buffy coat tissues, respectively), with an overall positivity of 57.8%. All animals, but one, which were positive by cytology were also PCR-positive. PCR on blood or buffy coat detected the highest number of <it>H. canis</it>-positive dogs displaying a sensitivity of 85.7% for both tissues that increased up to 98% when used in parallel. Twenty-six (74.8%) out of the 28 <it>H. canis</it>-positive dogs presented hematological abnormalities, eosinophilia being the commonest alteration observed.</p> <p>Conclusions</p> <p>The results suggest that PCR on buffy coat and blood is the best diagnostic assay for detecting <it>H. canis </it>infection in dogs, although when PCR is not available, cytology on buffy coat should be preferred to blood smear evaluation. This study has also demonstrated that <it>H. canis </it>infection can spread among young dogs infested by <it>R. sanguineus </it>and be present in the majority of the exposed population within 6 months.</p

    CHD7 Targets Active Gene Enhancer Elements to Modulate ES Cell-Specific Gene Expression

    Get PDF
    CHD7 is one of nine members of the chromodomain helicase DNA–binding domain family of ATP–dependent chromatin remodeling enzymes found in mammalian cells. De novo mutation of CHD7 is a major cause of CHARGE syndrome, a genetic condition characterized by multiple congenital anomalies. To gain insights to the function of CHD7, we used the technique of chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP–Seq) to map CHD7 sites in mouse ES cells. We identified 10,483 sites on chromatin bound by CHD7 at high confidence. Most of the CHD7 sites show features of gene enhancer elements. Specifically, CHD7 sites are predominantly located distal to transcription start sites, contain high levels of H3K4 mono-methylation, found within open chromatin that is hypersensitive to DNase I digestion, and correlate with ES cell-specific gene expression. Moreover, CHD7 co-localizes with P300, a known enhancer-binding protein and strong predictor of enhancer activity. Correlations with 18 other factors mapped by ChIP–seq in mouse ES cells indicate that CHD7 also co-localizes with ES cell master regulators OCT4, SOX2, and NANOG. Correlations between CHD7 sites and global gene expression profiles obtained from Chd7+/+, Chd7+/−, and Chd7−/− ES cells indicate that CHD7 functions at enhancers as a transcriptional rheostat to modulate, or fine-tune the expression levels of ES–specific genes. CHD7 can modulate genes in either the positive or negative direction, although negative regulation appears to be the more direct effect of CHD7 binding. These data indicate that enhancer-binding proteins can limit gene expression and are not necessarily co-activators. Although ES cells are not likely to be affected in CHARGE syndrome, we propose that enhancer-mediated gene dysregulation contributes to disease pathogenesis and that the critical CHD7 target genes may be subject to positive or negative regulation
    • 

    corecore