129 research outputs found
Synthesis of Data Word Transducers
In reactive synthesis, the goal is to automatically generate an
implementation from a specification of the reactive and non-terminating
input/output behaviours of a system. Specifications are usually modelled as
logical formulae or automata over infinite sequences of signals
(-words), while implementations are represented as transducers. In the
classical setting, the set of signals is assumed to be finite. In this paper,
we consider data -words instead, i.e., words over an infinite alphabet.
In this context, we study specifications and implementations respectively given
as automata and transducers extended with a finite set of registers. We
consider different instances, depending on whether the specification is
nondeterministic, universal or deterministic, and depending on whether the
number of registers of the implementation is given or not.
In the unbounded setting, we show undecidability for both universal and
nondeterministic specifications, while decidability is recovered in the
deterministic case. In the bounded setting, undecidability still holds for
nondeterministic specifications, but can be recovered by disallowing tests over
input data. The generic technique we use to show the latter result allows us to
reprove some known result, namely decidability of bounded synthesis for
universal specifications
Logical and Algebraic Characterizations of Rational Transductions
Rational word languages can be defined by several equivalent means: finite
state automata, rational expressions, finite congruences, or monadic
second-order (MSO) logic. The robust subclass of aperiodic languages is defined
by: counter-free automata, star-free expressions, aperiodic (finite)
congruences, or first-order (FO) logic. In particular, their algebraic
characterization by aperiodic congruences allows to decide whether a regular
language is aperiodic.
We lift this decidability result to rational transductions, i.e.,
word-to-word functions defined by finite state transducers. In this context,
logical and algebraic characterizations have also been proposed. Our main
result is that one can decide if a rational transduction (given as a
transducer) is in a given decidable congruence class. We also establish a
transfer result from logic-algebra equivalences over languages to equivalences
over transductions. As a consequence, it is decidable if a rational
transduction is first-order definable, and we show that this problem is
PSPACE-complete
First-order definable string transformations
The connection between languages defined by computational models and logic
for languages is well-studied. Monadic second-order logic and finite automata
are shown to closely correspond to each-other for the languages of strings,
trees, and partial-orders. Similar connections are shown for first-order logic
and finite automata with certain aperiodicity restriction. Courcelle in 1994
proposed a way to use logic to define functions over structures where the
output structure is defined using logical formulas interpreted over the input
structure. Engelfriet and Hoogeboom discovered the corresponding "automata
connection" by showing that two-way generalised sequential machines capture the
class of monadic-second order definable transformations. Alur and Cerny further
refined the result by proposing a one-way deterministic transducer model with
string variables---called the streaming string transducers---to capture the
same class of transformations. In this paper we establish a transducer-logic
correspondence for Courcelle's first-order definable string transformations. We
propose a new notion of transition monoid for streaming string transducers that
involves structural properties of both underlying input automata and variable
dependencies. By putting an aperiodicity restriction on the transition monoids,
we define a class of streaming string transducers that captures exactly the
class of first-order definable transformations.Comment: 31 page
Streamability of nested word transductions
We consider the problem of evaluating in streaming (i.e., in a single
left-to-right pass) a nested word transduction with a limited amount of memory.
A transduction T is said to be height bounded memory (HBM) if it can be
evaluated with a memory that depends only on the size of T and on the height of
the input word. We show that it is decidable in coNPTime for a nested word
transduction defined by a visibly pushdown transducer (VPT), if it is HBM. In
this case, the required amount of memory may depend exponentially on the height
of the word. We exhibit a sufficient, decidable condition for a VPT to be
evaluated with a memory that depends quadratically on the height of the word.
This condition defines a class of transductions that strictly contains all
determinizable VPTs
Expectations or Guarantees? I Want It All! A crossroad between games and MDPs
When reasoning about the strategic capabilities of an agent, it is important
to consider the nature of its adversaries. In the particular context of
controller synthesis for quantitative specifications, the usual problem is to
devise a strategy for a reactive system which yields some desired performance,
taking into account the possible impact of the environment of the system. There
are at least two ways to look at this environment. In the classical analysis of
two-player quantitative games, the environment is purely antagonistic and the
problem is to provide strict performance guarantees. In Markov decision
processes, the environment is seen as purely stochastic: the aim is then to
optimize the expected payoff, with no guarantee on individual outcomes.
In this expository work, we report on recent results introducing the beyond
worst-case synthesis problem, which is to construct strategies that guarantee
some quantitative requirement in the worst-case while providing an higher
expected value against a particular stochastic model of the environment given
as input. This problem is relevant to produce system controllers that provide
nice expected performance in the everyday situation while ensuring a strict
(but relaxed) performance threshold even in the event of very bad (while
unlikely) circumstances. It has been studied for both the mean-payoff and the
shortest path quantitative measures.Comment: In Proceedings SR 2014, arXiv:1404.041
Two-Way Parikh Automata
Parikh automata extend automata with counters whose values can only be tested at the end of the computation, with respect to membership into a semi-linear set. Parikh automata have found several applications, for instance in transducer theory, as they enjoy a decidable emptiness problem.
In this paper, we study two-way Parikh automata. We show that emptiness becomes undecidable in the non-deterministic case. However, it is PSpace-C when the number of visits to any input position is bounded and the semi-linear set is given as an existential Presburger formula. We also give tight complexity bounds for the inclusion, equivalence and universality problems. Finally, we characterise precisely the complexity of those problems when the semi-linear constraint is given by an arbitrary Presburger formula
Aperiodicity of Rational Functions Is PSPACE-Complete
International audienceIt is known that a language of finite words is definable in monadic second-order logic – MSO – (resp. first-order logic – FO –) iff it is recognized by some finite automaton (resp. some aperiodic finite automaton). Deciding whether an automaton A is equivalent to an aperiodic one is known to be PSPACE-complete. This problem has an important application in logic: it allows one to decide whether a given MSO formula is equivalent to some FO formula. In this paper, we address the aperiodicity problem for functions from finite words to finite words (transductions), defined by finite transducers, or equivalently by bimachines, a transducer model studied by Schützenberger and Reutenauer. Precisely, we show that the problem of deciding whether a given bimachine is equivalent to some aperiodic one is PSPACE-complete
Iterated Regret Minimization in Game Graphs
Iterated regret minimization has been introduced recently by J.Y. Halpern and
R. Pass in classical strategic games. For many games of interest, this new
solution concept provides solutions that are judged more reasonable than
solutions offered by traditional game concepts -- such as Nash equilibrium --.
Although computing iterated regret on explicit matrix game is conceptually and
computationally easy, nothing is known about computing the iterated regret on
games whose matrices are defined implicitly using game tree, game DAG or, more
generally game graphs. In this paper, we investigate iterated regret
minimization for infinite duration two-player quantitative non-zero sum games
played on graphs.
We consider reachability objectives that are not necessarily antagonist.
Edges are weighted by integers -- one for each player --, and the payoffs are
defined by the sum of the weights along the paths. Depending on the class of
graphs, we give either polynomial or pseudo-polynomial time algorithms to
compute a strategy that minimizes the regret for a fixed player. We finally
give algorithms to compute the strategies of the two players that minimize the
iterated regret for trees, and for graphs with strictly positive weights only.Comment: 19 pages. Bug in introductive example fixed
The Complexity of Rational Synthesis
We study the computational complexity of the cooperative and non-cooperative rational synthesis problems, as introduced by Kupferman, Vardi and co-authors. We provide tight results for most of the classical omega-regular objectives, and show how to solve those problems optimally
On Equivalence and Uniformisation Problems for Finite Transducers
Transductions are binary relations of finite words. For rational transductions, i.e., transductions defined by finite transducers, the inclusion, equivalence and sequential uniformisation problems are known to be undecidable. In this paper, we investigate stronger variants of inclusion, equivalence and sequential uniformisation, based on a general notion of transducer resynchronisation, and show their decidability. We also investigate the classes of finite-valued rational transductions and deterministic rational transductions, which are known to have a decidable equivalence problem. We show that sequential uniformisation is also decidable for them
- …
