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—— Abstract

It is known that a language of finite words is definable in monadic second-order logic — MSO —
(vesp. first-order logic — FO —) iff it is recognized by some finite automaton (resp. some aperiodic
finite automaton). Deciding whether an automaton A is equivalent to an aperiodic one is known
to be PSPACE-complete. This problem has an important application in logic: it allows one to
decide whether a given MSO formula is equivalent to some FO formula. In this paper, we address

the aperiodicity problem for functions from finite words to finite words (transductions), defined by
finite transducers, or equivalently by bimachines, a transducer model studied by Schiitzenberger
and Reutenauer. Precisely, we show that the problem of deciding whether a given bimachine is
equivalent to some aperiodic one is PSPACE-complete.
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1 Introduction

Rational languages and the aperiodicity problem

The theory of rational languages (of finite words) is robust, due to many characterizations
coming from different domains, such as computation, logic and algebra. For instance, it
is well-known that a language is rational iff it is recognized by some finite automaton,
iff it is definable in monadic second-order logic with one successor (MSO), iff its right
syntactic congruence (also known as Myhill-Nerode congruence) has finite index. The latter
algebraic characterization is closely related to the existence of a unique minimal deterministic
automaton for every rational language, the states of which are the classes of the right syntactic
congruence. Connections between computation, logic and algebra have been established for
subclasses of rational languages. Perhaps the most important example, based on seminal
works by Schiitzenberger [21], McNaughton and Papert [16], is the class of aperiodic languages,
characterized by aperiodic automata, first-order logic (FO), and aperiodic right syntactic
congruences. See also [23] for other classes.

Thanks to the (effective) logic-automata connections, results in logic can be obtained from
results in automata, which are well-suited for algorithmic analysis. An important example
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which motivates this paper is the FO in MSO definability problem: given an MSO formula,
is it equivalent to some FO formula, over finite strings? In automata-theoretic terms, this
amounts to decide whether a given automaton A is equivalent to an aperiodic one. We
illustrate this problem on an example, by considering the following deterministic automata
which both recognize a* (all states are final, and all states but ¢ are initial):

a

2O-FB OO

a

Roughly, an automaton is aperiodic if for some n, for all words u, u™ and u™*! behave the
same with respect to their effect on states. For instance, in the left automaton, any word has
one of the two following behaviours: either sending gg to go and ¢; to ¢1, or g to ¢; and ¢
to go. This automaton is not aperiodic because a™ and a”*! have necessarily two different
behaviours, for all n > 0. However, this left automaton is equivalent to the right one, which
is aperiodic. In general, it is not easy to see whether some automaton A is equivalent to an
aperiodic one, and this problem is known to be PSPACE-complete when A is deterministic
To decide it, the connection between automata and algebra plays an important role. Indeed,
since aperiodic automata and aperiodic right congruences both characterize the same class
of languages, it suffices to (1) minimize A4 into the unique minimal automaton A, (which is
an effective representation of the right syntactic congruence of L(A)) and (2) decide whether
Ay, is aperiodic. It is well-known that step (1) is in PTIME since A is deterministic, and
step (2) is known to be in PSPACE [22], and this is optimal [5]. In this paper, our goal is to
extend this decidability result to functions of finite words, called transductions.

Rational transductions and the aperiodicity problem

A transduction is a function of finite words. Rational transductions are the transductions
realized by finite automata with outputs, called transducers [2]. As an example, consider the
three following transducers:

The left one maps any word of the form a™ to ™. The middle one realizes the same
transduction, and the right one maps any word of the form a?" to (ab)", and any a*"*!
to (ab)™a. Aperiodic rational transductions are the transductions realized by transducers
with aperiodic underlying input automata. E.g., the transducer on the left is not aperiodic,
but is equivalent to the middle one, which is aperiodic. Hence both transducers realize an
aperiodic rational transduction. However, the transducer on the right is not aperiodic, and
is not equivalent to any aperiodic transducer. The left and right transducers are almost the
same, but one realizes an aperiodic rational transduction while the other does not. It shows
that to decide whether a transducer is equivalent to an aperiodic one, outputs must be taken
into account as well, reasoning only on the underlying input automata is not sufficient.
The aperiodicity problem asks, given some effective representation of a rational trans-
duction, whether this transduction is aperiodic. It has been shown in [11] that two-way
transducers (resp. aperiodic two-way transducers [14, 4]) are expressively equivalent to
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MSOT (resp. FOT), a formalism introduced by Courcelle in the general context of graph
transductions [7]. This equivalence carries over to the subclass of rational functions (resp.
aperiodic rational functions) by considering MSOT (resp. FOT) with the natural restriction
of order-preserving [3, 12]. As for languages, solving the aperiodicity problem also solves the
logic definability problem FOT in MSOT (resp. order-preserving FOT in order-preserving
MSOT). As we have seen, for rational languages, the aperiodicity checking procedure heavily
relies on the existence of a unique minimal deterministic automaton. However in the setting
of transductions, determinism is not sufficient to capture all rational transductions. In
transducer theory, the notion of determinism is called sequentiality, a transducer being
sequential if its underlying input automaton is deterministic. Consider the transduction swap
that swaps the first and last letter of a word, i.e. maps any word of the form ocwg, where
o, B are symbols and w is a word, to Swo. If the alphabet has more than one symbol, the
transduction swap cannot be realized by a sequential transducer, although it can be easily
shown that it is rational. The reason is that any transducer realizing it should guess in
advance the last symbol 3, by using non-determinism.

To overcome this issue, it has been shown that any rational transduction is the composition
of a (left) sequential and a right sequential transduction [10]. In other words, any rational
transduction can be realized by composing a sequential transducer that reads input words
from right to left, and a sequential transducer that reads words from left to right. This
idea has been captured in a single deterministic device called bimachine, introduced by
Schiitzenberger [20] and studied by Eilenberg [9], and Reutenauer and Schiitzenberger [17].
Intuitively, a bimachine is made of two deterministic automata £ and R, and some output
function w, and works as follows: R processes an input word w from right to left and
annotates it with its states. Symmetrically, £ processes w from left to right and annotates it
with its states. Finally, the output function w is applied to any triple (r, o,1) of the annotated
word, where 7 is a state of R, ¢ is an input symbol of w, and [ is a state of £. For example,
consider again the transduction swap on the alphabet {a,b}. It is realized by the following
bimachine with a left deterministic automaton that remembers whether the prefix read so
far is empty (state lg), starts with a (state l,) or starts with b (state ). Symmetrically, the
deterministic right automaton remembers information about suffixes. Finally, the output
function w maps any triple of the form (ly,0,75) or (Ig,0,79) to 8, and any other triple
(l,0,7) to o, for o, € {a,b}. An execution on aabd is illustrated on the next figure:

Right automaton

Contributions

A bimachine is aperiodic if its two left and right automata are aperiodic. Aperiodic bimachines
define exactly aperiodic rational transductions [18]. In this paper, our main result is to
provide optimal complexity (PSPACE-complete) of the aperiodicity problem for rational
transductions represented by bimachines.

We detail our contributions more precisely. In language theory, solving the aperiodicity
problem relies on the existence of a unique deterministic automaton. For transductions,
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there is no unique minimal (deterministic) bimachine in general, but a canonical bimachine
attached to every rational transduction has been defined by Reutenauer and Schiitzenberger
[17], and this machine can be effectively constructed from a transducer or a bimachine
realizing the transduction. As a first contribution, we show that a rational transduction is
aperiodic iff its canonical bimachine is aperiodic. As a consequence, this gives an algorithm to
solve the aperiodicity problem: (1) construct the canonical bimachine and (2) check whether
its left and right automata are aperiodic, using the algorithm of [5].

Unfortunately, step (1) cannot be done in PTIME and this is unavoidable: the canonical
bimachine may be exponentially bigger than the initial bimachine. Instead of constructing
the canonical bimachine, we show that it is sufficient to construct another minimal bimachine
of polynomial size, which is aperiodic iff the function it realizes is aperiodic rational. This
other bimachine is constructed via a PTIME generalization of a minimization procedure for
automata to bimachines. This yields in the end a PSPACE algorithm, whose correctness is
proved based on the aperiodicity of the canonical bimachine. The lower bound is immediate
as it is already the case of deterministic automata.

Comparison with [13]

The aperiodicity problem was already shown to be decidable in [13], however with a more
general procedure working for any (decidable) variety of congruences (e.g. the class of
commutative congruences). More precisely, it is shown in [13] that the following problem is
decidable: given a transducer, is it equivalent to some transducer whose transition congruence
belongs to some decidable variety V. It is shown that a transduction is in V iff one the
minimal bimachines is in V, and hence decidability comes as follows: construct the set of
all minimal bimachines (shown to be finite) and test whether one of them belongs to V.
Instantiated by the variety of aperiodic congruences, this solves the aperiodicity problem,
however with non-optimal complexity (several exponentials). Moreover, it is shown in [13]
that the canonical bimachine of Reutenauer and Schiitzenberger does not necessarily preserve
the equalities of a variety in general. In this paper, we show instead that for aperiodic
congruences, the canonical bimachine is necessarily aperiodic if the transduction is, a result
which is crucial to obtain an optimal procedure.

A last improvement compared to [13] is the following: in [13], we defined a rational
transduction to be aperiodic (and more generally in a variety V) if it is realized by an
unambiguous aperiodic transducer (or an unambiguous V-transducer). This definition was
motivated by the fact that unambiguous transducers already capture all rational functions.
For a general variety V, this left open the problem of whether any transduction realized
by a V-transducer is realizable by an unambiguous V-transducer. In this paper, we close
this problem for the case of aperiodicity: as we show, a transduction is realized by some
aperiodic transducer (not necessarily unambiguous) iff its canonical bimachine is aperiodic,
and any aperiodic bimachine can be turned into an aperiodic unambiguous transducer.

2 Rational languages and transductions

Words and languages

An alphabet X is a finite set of symbols, and a word over ¥ is an element of the free monoid
* whose neutral element is denoted by e. For w € ¥*, we write |w| for its length and in
particular, |¢] = 0. For a non-empty word w and i € {1,..., |w|}, we denote by wli] the ith
symbol of w. For u,v € ¥* we write u =< v is u is a prefix of v and in this case we denote by
u~1v the unique word v’ such that v = uv’.



E. Filiot, O. Gauwin, and N. Lhote

By u A v we denote the longest common prefiz of any two words u and v, and by ||u, v||
the value |u|+ |v] —2|u Av|. Tt is well-known that ||., .|| defines a distance. Finally, a language
L C ¥* is a set of words.

Finite automata

A finite automaton (or just automaton for short) over an alphabet ¥ is a tuple A = (Q, I, F, A)
where @) is a finite set of states, I C @ (resp. F' C @) is a set of initial (resp. final) states,
and A C Q x ¥ x @ is a transition relation. A run r of an automaton A = (Q, I, F,A) on a
word w € ¥* of length n is a word r = qq . . . g, over @ such that (¢;, w[i + 1], ;1) € A for
all i € {0,...,n—1}. The run r is accepting if go € I and ¢, € F. A word is accepted by A
if there exists an accepting run of A over it. The language recognized by A is the set [A] of
words accepted by A. We write p — 4 ¢ (or simply p e q) whenever there exists a run r on
w such that r[1] = p and r[|r|]] = ¢. An automaton A is deterministic if |I| = 1 and for any
two rules (p,o,q1), (p,0,q2) € A, it holds that ¢; = ¢2. It is unambiguous if for any word
there exists at most one accepting run of A on it. It is complete if for every state p € @) and
symbol o € X, (p,0,q) € A for some g € Q.

Congruences and recognizability

Equivalently, rational languages can be defined as the languages recognized by congruences
of finite index. We present these notions. Let ¥ be an alphabet and let ~ be an equivalence
relation on ¥*. We say that ~ is a right congruence (resp. left congruence) if it satisfies
u~v=uo ~vo (resp. u~ v = ou~ ov) for all u,v € ¥*, 0 € X. A congruence is both
a left and right congruence. For u € ¥*, the equivalence class of u is denoted by [u]~.. (or
[u] if ~ is clear from the context), and ¥*/. = {[u]~ | © € ¥*} is called the quotient of ¥*
by ~. We say that ~ has finite index if ¥* /. is finite. Concatenation naturally extends to
congruence classes as follows: for all u,v € ¥*, [u][v]~ = [uv]~. Since ~ is a congruence,
the latter is well-defined. With this operation, ¥*/. forms a monoid whose neutral element
is [€]~.

» Example 1. We will extensively use the following examples of congruences in this paper:
the syntactic congruence =y, of a language L, the transition congruence =~ 4 of an automaton
A with set of states @ and if A is deterministic with initial state qg, the right transition
congruence ~_4. They are defined as follows, for any two words u,v € ¥*

u = v & (VeyyeXl*, zuyel < zvy€l)

u =g v & (q€Q, poaqg S Poaq)
u v

u ~yq4 v & (Vgeaq, Qo —aq & q—AQ)

In particular, if A is deterministic and complete, then [u]~. , can be identified with the state
of A reached by wu from the initial state. In this paper, we often make this identification,
implicitly assuming that A is complete!, and rather denote [u] 4 instead of [u]~ .

A language L C ¥* is recognized by a congruence ~ if it is equal to the union of some
equivalence classes of ¥*/., i.e. L ={u € ¥* | [u] € P} for some P C ¥*/.. E.g., L is
recognized by =, by taking P = L/=,, and any language L is rational iff it is recognized by
a congruence of finite index (see for instance [23]).

1" Any automaton can be made complete in polynomial-time.
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Equivalence relations can be compared with respect to their granularity: if ~q,~9 are
two equivalence relations on ¥*, we say that ~q is finer than ~y (or ~g is coarser than ~1),
if for all u,v € ¥* such that u ~q v, it holds u ~5 v. We write ~; C ~o to mean that ~q is
finer than ~5. E.g., =, is the coarsest congruence recognizing L, for any language L. In this
paper, we also compare deterministic automata Ay, As with respect to their right transition
congruence, by saying that A; is finer than Ay if ~4, C ~_4,. We write A; C Ay when A4,
is finer than As. For example, the minimal deterministic automaton recognizing a language
L is the coarsest deterministic automaton recognizing L with respect to C.

Rational transductions and finite transducers

A transduction f over a finite alphabet ¥ is a partial function from >* to %*, whose domain
is denoted by dom(f). We are interested in the class of rational transductions, defined by
finite transducers. A finite transducer 2 (or just transducer for short) over an alphabet %
is a tuple T = (A, 0,4, ¢) where A = (Q,I,F,A) is a finite automaton, o : A — X* is the
output function, i : I — ¥* is the initial function and t : F' — X* is the final function. The

transducer T realizes a binary relation [T] C ¥* x X* defined as follows. Let r = qg ... qn be

a run of A on some word u. We write qq L‘UAT gr, (or simply qo ilv% gr) whenever ¢ XA Gn

and v = o(qo, u[0],q1) . . . o(gn—1,u[n],g,). If r is an accepting run and w = i(qo)vt(q,) then
we say that (u,w) is realized by T, call u an input word and w an oulput word. The relation
realized by T is the set [T] = {(u,w) | (u,w) is realized by T }.

A transducer T = (A, o,i,t) is functional if it realizes a transduction (a function).
This property is decidable in PTIME (see [1] for instance). T is called unambiguous (resp.
sequential) if A is unambiguous (resp. deterministic). In both cases [7] is a transduction and
we denote (u,w) € [T] by [T](u) = w. The class of rational transductions (resp. sequential
transductions) is defined as the class of transductions realized by finite transducers (resp.
sequential transducers). It is also known (see [2]) that a transduction is rational iff it is
realized by some unambiguous transducer.

Aperiodicity

We define the notion of aperiodicity for congruences, automata, transducers and rational
transductions. First, a congruence ~ on ¥* is aperiodic if for some n > 0 and all words
w € ¥*, we have w" ~ w"t!. Aperiodicity is stable by taking coarser congruences, i.e. if
~1 £ ~9 and ~q is aperiodic, then so is ~5. A deterministic automaton A is aperiodic
if ~ 4 is aperiodic. In other words, A is aperiodic if for some n > 0, for all words w and

states p, ¢, we have p wr, q iff p Lﬂ> q. Deciding whether a deterministic automaton is
aperiodic is PSPACE-complete [5]. Since the minimal deterministic automaton Ay, recognizing
a language L is the coarsest automaton recognizing L, and aperiodicity is stable by taking
coarser congruences, Ay is aperiodic iff there is some aperiodic deterministic automaton
recognizing L. Therefore, deciding whether a deterministic automaton is equivalent to some
aperiodic one is also PSPACE-complete, because minimizing a deterministic automaton can
be done in PTIME. Finally, a transducer T = (A, o, 1, ¢) is aperiodic if A is aperiodic, and
a transduction f is aperiodic rational (resp. aperiodic sequential) if it is realized by some
aperiodic transducer (resp. aperiodic sequential transducer).

2 This type of transducer is sometimes called real-time transducer [19]. In the general case, a transition
of a transducer may be labelled by any word, even empty. However such a transducer is equivalent to a
real-time one if it realizes a function.
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3 Bimachines and minimization

In this section we define bimachines, and associated operators Left and Right. Then we define
canonical bimachines, that will be used in Section 4 to prove that the minimal bimachine
Left(Right(B)) is aperiodic iff the transduction realized by the bimachine B is.

3.1 Bimachines

A bimachine is a model of computation, as expressive as (functional) transducers, introduced
by Schiitzenberger in [20]. It is composed of two automata, an automaton reading words
deterministically backwards, called a right automaton, and a classical deterministic automaton
called here a left automaton. The right automaton acts as a deterministic look-ahead. An
output function produces words based on the current symbol, and the states of the left and
right automata.

More precisely, a right automaton R = (Q, I, F,A) is an automaton such that I is a
singleton, and transitions are backward deterministic: for any transitions (py, o, q),(p2, 7, q)
€ A it holds that p; = ps. The only difference with a (classical) automaton lies in the
notion of accepting runs (and therefore in the notion of recognized language): a run r is
accepting if r[1] is final and r[|r|] is initial. Therefore, a right automaton can be thought
of as an automaton reading words backwards. We write sy ¢—% s; instead of sy —g s
(with the same meaning) to emphasize that R is a right automaton, and graphically any
transition (g, o,p) € A is depicted with an arrow from p to ¢. For instance, the accepting
run on ba of the right automaton of the bimachine depicted in Section 1 is rp7prg. The left
transition congruence ~g of R is defined by u ~g v & (Vr € R,r Erroger & ro)-
Implicitly assuming that R is complete, we identify [u]., (also just denoted by [u]g) with
the state r € R such that r <~ 9. We say that R is finer than a right automaton R’
(written R C R’) if ~g C ~gs. A left automaton is a deterministic automaton, called ’left’
to emphasize its role in the context of bimachines.

A bimachine over an alphabet ¥ is a tuple B = (£, R,w, A, p) where £ = (L, {lo}, Fr,Ar)
is a left automaton, R = (R, {ro}, Fr, Ar) is a right automaton, w : L x ¥ X R — ¥* is the
output function, A : Fr — X* is the left final function and p : Fr — ¥* is the right final
function. Both automata £ and R must recognize the same language, i.e. [L] = [R].

We now define the transduction [B] realized by B. First, we extend the function w to
L x ¥* x R as follows: for all states r € Randl € L, allu € ¥* and 0 € 3, w(l,¢6,7) = ¢,
and w(l,uo,r) = w(l,u,”)w(l’,o,r) where I %, I’ and ' << r. Now, the domain dom(B)
of Bis [£] = [R]. For all u € [£], if lo = I for some | € F and r «— 7o for some r € Fg,
the image of u by B is defined by [B](u) = A(r)w(lg, u, m9)p(1).

3.2 Left and right bimachine minimization

Sequential transducers can be minimized by producing the outputs as early as possible [6]. No
such procedure exist for transducers in general. For bimachines, however, a similar procedure
is proposed in [17]. This one applies the “as early as possible” principle, but parameterized by
the look-ahead information of the right automaton. We describe this minimization, exhibit
some useful properties, and provide a PTIME minimization algorithm.

Let f be a rational transduction realized by a bimachine B whose right automaton
is R. Our goal here is to construct a bimachine Left;(B) = (Left;(R),R,w, A, p), which
realizes f and has the minimal left automaton among bimachines realizing f with R as
its right automaton. We first give the construction of a minimal (wrt R) left automaton

13:7

FSTTCS 2016



13:8

Aperiodicity of Rational Functions Is PSPACE-Complete

Left;(R) (or simply Left(R) when it is clear from context). For simplicity, we will write
[w]r instead of [w]., for any word w € ¥*. For any two words w and u, we define 3
Fuaje (@) = A{f () | v € [l N u~'dom(f)}.

This word is the longest possible output upon reading v, knowing that the suffix is in
[w]r. The states of Left;(R) will be the classes of the right congruence ~, defined by u ~p, v
if for any letter o, any w, z € ¥* we have:

uz € dom(f) < vz € dom(f)

st]n(uz)*lf(gz) = f[E]R(vz/Z*lf(vz), ~ if uz, vz € dom(f)

f[o.w]R(uz)_lf[w]R(uza) = f[gw]R(vz)_lf[w]R(vza)

Intuitively, the second condition ensures that after reading uz and vz, Left;(R) outputs
the same word by the final output function, and the third condition ensures that the
output produced on o is the same after reading uz and vz. From ~p we define the
automaton Left;(R) = (X*/~,,{[e]~,}, F,A) where F' = {[w]., | w € dom(f)} and
A ={([w]~p,0,[wo]~,) | 0 €%, we X"} Finally, the output functions are defined by:
w([u]’vaav [U]R) = f[ov]n(u)ilf[v]n(uo-)’ )‘([U}’R) = f[’U]R(E) and p([u]NL) = f[e]R(u)ilf(u)

Symmetrically one can define Right (L) (and hence Right ;(B)).

The correctness of these constructions was shown in [17], i.e. Left(B) and Right(B) both
realize f. The following proposition shows that Left(R) and Right(L) are minimal automata
for which the bimachines (with fixed R and £ respectively) realize f.%

» Proposition 2. If B = (L,R,w, A, p) is a bimachine, then L T Left(R) and R T Right(L).

One contribution of this paper is to show that the left automaton can be minimized in
PTIME (for a fixed right automaton), and symmetrically for the right automaton.

» Theorem 3. Let B be a bimachine. One can compute Left(B) (and Right(B)) in PTIME.

Proof. Let B = (£, R,w, A, p) be a bimachine realizing a function f with automata £ =
(Qcylo, Fr,Ar)and R = (Qr,ro, Fr, Ar). W.lo.g. we assume that £ is complete (otherwise
we complete it in polynomial time). The algorithm works in two steps: (i) make the output
production earliest, (ii) run state minimization on the left automaton.

Step 1: making the bimachine earliest. We construct B’ = (£, R,w’, N, p') a bimachine
realizing f with the same automata, but with the earliest leftmost possible outputs:

W ([, 0, [0R) = Fiooir (W) froge (o) 0/ ([ul) = frgn (W) f () N ([lR) = fium (6).

These functions are well-defined as they do not depend on the choice of the representatives u
(see the proof of Proposition 2). We have to show that these output values can be computed
in polynomial time. The algorithm is very close to the ones described in [6], for sequential
functions, which is why we only give the main ideas. We first remark, as in the proof of
Proposition 2, that for any words u, v, f\[v]ﬁ(u) = M[wv]r)w([e]z, u, [v]r)B([u]z, [v]r) with:
Blule, [vlr) = A{w | Fz € [vlr Nu~'dom(f),w([ulz, . [€]r)p([uz]c) = w}
As in [6], to compute the values B([u]z, [v]r) we can take the directed graph of the automaton
L x R with the outputs of w labelling the edges. In order to account for the functions A
and p we add two vertices, a source s pointing to the initial states with the edges labelled

3 As a convention, the longest common prefix of an empty set of words is the empty word, that is: A0 = e.
4 Tt was already shown in [17] for total functions, we extend it with a similar proof to our setting, that is,
when the function is not total, and the automata of the bimachine both recognize dom(f).
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accordingly by the values of the initial function, and a target vertex ¢ with edges pointing to
it from the final states with the edges labelled by the final function. The value of S([u]., [v]r)
can be seen as the longest common prefix of the labels of all the paths starting in ([u]., [v]r)
and ending in the target vertex t. These values can be computed in polynomial time [6].

Step 2: minimizing the left automaton. Now we describe a minimization algorithm
inspired by Moore’s minimization algorithm for DFA. It consists in computing successively
finer equivalence relations ~q, ~1, ... over the states of £. The only difference is in the initial
partition, for which we have to make sure that outputs are compatible. More precisely, for
all I € Qg and i > 0, we let:

Il i leFpel eFe, p())=p('), and Vr,0, '(l,0,7) =’ l',0,7)
l ~it1 l/ if ~g ll and VO’, l.o ~; l’.O’

where [.0 denotes the state reached by L after reading the letter o from I. We extend this
notation to words in the natural way: l.u is the state such that | —, lL.u (it is unique as L is
deterministic and complete).

Since ~;41 E ~; for all ¢ > 0, this sequence converges after at most |Q.| steps to an
equivalence relation that we denote by ~,. Moreover, ~q can be computed in PTIME from
B’, and each ~; can be computed in PTIME from ~;_1, for i > 0.

We extend the relations ~; to X* as follows: u ~; v if lg.u ~; lg.v. We show in the long
version of this paper that ~,=~ (remind that ~, is the right congruence associated with
R and used to define Left(R)). To give an idea of the proof, we first show by induction
on i > 0 that for all u,v € £*, u ~; v iff for all z € X%, all w € ¥* and all ¢ € &, we
have (i) uz € dom(f) iff vz € dom(f), (i) p'([uz]z) = p'([vz]z) (if uz,vz € dom(f)), and
(iil) w'([uz]z, 0, [wW]r) = W' ([vZ]z, 0, [w]r). This implies that u ~, v iff the properties (i)—(iii)
holds for all z € ¥*. Finally, we conclude by noticing that p'([uz]z) = ﬁE]R(uz)_lf(uz), and
w/([uz]£7 o, [w}'R) = f[ow]R (uz)ilf[w]n (UZO')

Clearly, if | ~, I’, then for all 0 € X, l.o ~, l'.0c. Moreover, if | € F, then since
~y C ~p, we also get I’ € Fz, and conversely. Therefore one can define the left automaton
L/, =Qrs/~.,Fr/~.,[lo]~.,0) where §([l]~,,0) = [l.0]~,, and we have [L.. ] = [£].

Finally, ~,=~p, implies that the bimachine Left,(B) is isomorphic to the bimachine

(L)~ Ry, X p") where w"([u]~,, 0, [v]r) = W'([ulz,0,[v]r) and p"([u]~,) = p'([ulc).

Note that these output functions are well-defined since, by definition, ~, is compatible with
the output functions ', w’, p’. Moreover, £/, can be computed in PTIME since ~, can be
computed in PTIME, and the output functions w”, p” can as well be computed in PTIME,
which concludes the proof. A last remark is that a Hopcroft-like minimization algorithm
[15], initialized with ~¢ as well, would be more efficient, but with a more involved proof. <

3.3 A minimal and canonical bimachine

For a given function f and two bimachines B; and Bs realizing it, we say that By is finer
than By, denoted again by By C Bs, if we have both £1 C L5 and Ry C Rs, with £; and R;
being the left and the right automata of bimachine B;, respectively. We say that a bimachine
is minimal if there is no coarser bimachine realizing the same transduction. There is no
unique minimal bimachine in general [17]. In this section, we explain the construction of a
minimal and canonical bimachine associated with a rational transduction, the main result
of [17]. It relies on (a) a canonical right automaton, that we detail hereafter, and (b) the

construction of a minimal left automaton from a right automaton, as described in Section 3.2.
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The construction of a canonical right automaton is based on a left congruence associated
with a function that measures the effect of suffixes on the translation of prefixes. The left
congruence of a transduction f on ¥ is defined Yu,v € ¥* by u~—v if:

Yw € ¥*, wu € dom(f) < wv € dom(f) and

sup{ £ (wu), f(wv)| | wu, wo € dom(f)} < o0
This congruence has finite index if f is rational [17]. The converse does not hold but if
additionally f~' preserves language rationality, then f is rational. For the rest of this

section [w] denotes the class of w in ¥*/._ .. The canonical right automaton for fis Ry =
X%/, {le]}, F, A) where F = {[w] | w € dom(f)} and A = {([ow],0,[w]) | c€X, we¥*}.

» Remark. We can define symmetrically the right congruence of f by u —; v if Vuw,
uw € dom(f) < vw € dom(f) and sup{|| f(uw), f(vw)|| | ww,vw € dom(f)} < oo and
based on this right congruence, define the canonical left automaton Ly.

The automata Ry and L are coarser than any right (resp. left) automaton of a bimachine
realizing f. This was shown in [13] but only for the case of total functions. The proof is
similar in the general case and we give it in the long version of this paper for completeness.

» Proposition 4. Let f be a transduction, and let B = (L, R,w, A, p) be a bimachine realizing
f.- Then LE Ly and RE Ry .

The canonical bimachine [17] associated with a rational transduction f is the bimachine
Bp = (Left;(Ry), Ry, wy, Ay, py) where:

wf([u]~L7U’ [U]Rf> = ﬁUU]Rf (u)_lf[v]Rf (UU)
Ar(lvlry) = for, ()
pi(ll~y) = flgr, (@)~'f(u)

By its definition, the bimachine By is canonical, i.e. does not depend on any description of
f. It is also minimal: indeed, suppose that f is realized by a bimachine B = (£, R,w, A, p)
such that By C B, i.e. Left(Ry) C £ and Ry C R. Then w (and similarly A, p) can be
restricted to w'([u]z, 0, [vlr,) = w([u]z, 0, [v]r ), which is well-defined since Ry C R, so that
the bimachine (£, Ry¢,w’, N, p’) realizes f. By Proposition 2 we get £ T Left(Ry). Moreover,
by Proposition 4, we also have R & Ry.

Finally, By is computable when f is given by a bimachine or a transducer [17].

4 Characterization of aperiodic transductions

In this section we show that to decide if a transduction given by a bimachine B is aperiodic,
one only needs to minimize B, i.e. to construct Left(Right(B)), which yields a minimal
bimachine, and check its aperiodicity (Section 4.2). To prove the correctness of this procedure,
we rely on the following characterization proved in Section 4.1: a transduction f is aperiodic
if and only if the canonical bimachine By is aperiodic. This is in contrast with other varieties
for which the canonical bimachine does not preserve membership in general [13]. The latter
characterization does not yield an optimal algorithm since the canonical bimachine may be
exponentially larger than the initial bimachine.

4.1 Characterization through canonical bimachine

In this section, given a rational transduction f over some alphabet ¥, we show that it is
aperiodic iff the canonical bimachine B associated with f, defined in the previous section,
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is aperiodic. It relies on two important facts: (i) the left congruence < of an aperiodic
transduction is aperiodic (Proposition 5), (ii) any aperiodic rational transduction f can
be decomposed into f = £ o labelr, such that ¢ is realized by some aperiodic sequential
transducer, and labelr , annotates every input position i with the class of the suffix from i
by < (Proposition 6). From this decomposition, one can construct an aperiodic bimachine
whenever f is aperiodic. First, one shows that R is aperiodic when f is too:

» Proposition 5. Let f be a transduction realizable by an aperiodic transducer then the
congruence ¢, and so the automaton R¢, are aperiodic.

A right-sequential transducer is a transducer whose underlying input automaton is a right
automaton. A right-sequential transduction is a function realized by a right-sequential
transducer. A bimachine can be seen as the composition of a right-sequential transduction
annotating the word with states of the right automaton, and a (left-) sequential transduction
obtained from the left automaton and the output function w. We show that any aperiodic
rational transduction f can be decomposed into £ o labelr, such that £ can be realized by a
sequential aperiodic transducer, and labelr , annotates the input word with states of R;.

More precisely, let R be a right automaton over ¥ with set of states @, and let Xz = {0y |
o € X,q € Q}. We define the rational transduction labelg : 3* — 3%, called the labelling
function of R, which labels words in ¥* by states of R. It is defined by the right-sequential
transducer 7 = (R, o, €, €) where € denotes the constant function which maps any element to
€, and with o(p, 0, q) = ogq.

» Proposition 6. Let f be an aperiodic rational transduction. There exists a transduction ¢
such that f = £ o labelg, and { is realized by a sequential aperiodic transducer.

Proof. We first show that there exists a sequential transduction ¢ such that f = o labelr,.
This sequential transduction is realized by the left automaton of the canonical bimachine
By combined with the output function wy. Then, we show that ¢ is aperiodic rational, by
constructing an aperiodic transducer realizing it, obtained by taking the product of any
aperiodic transducer realizing f (which exists by assumption) and Ry, and by ensuring
that the information [u] occurring on symbols oy, is consistent with the information [u]
occurring on the states of the product, for all words u. Finally, any aperiodic and sequential
transduction can be realized by a transducer which is both sequential and aperiodic (i.e.
sequentialization preserves aperiodicity [13]). Details can be found in the long version. <

We can now show our characterization of aperiodic rational transductions:
» Theorem 7. A rational function f is aperiodic iff its canonical bimachine is aperiodic.

Proof. It is known that any bimachine can be transformed into an equivalent (unambiguous)
transducer whose underlying automaton is the product of the left and the right automata
[13, 17]. Roughly, the transducer has to guess the state of the right automaton, and
unambiguity is implied by the fact that the transitions of the right automaton are backward
deterministic. The product of two aperiodic automata being aperiodic, this shows the ’if’
direction.

We now show the ’only if” direction. By Proposition 5, f can be decomposed into f = {o
label , such that £ is realized by some aperiodic sequential transducer 7, = (A, 0m), iy tim)-
Based on this decomposition we construct an aperiodic bimachine B = (D, Ry, w, A, p)
realizing f. This will allow to conclude. Indeed, by Proposition 2 we have D T Left(Ry),
and since D is aperiodic, so is Left(R). Since Ry is aperiodic as well by Proposition 5, it
implies that By is aperiodic. Let us now construct D, w, A and p.

13:11
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Recall that the input alphabet of 7, (and A,,) is ¥q where Q = ¥*/._ . To construct B,
it is tempting to think that it suffices to take the projection of A,, on X as left automaton,
Ry as right automaton, and to define the output function w by w(p, o, [u]) = w where

P M q is the transition of 7, on oy, with output w. The problem is that the projection

of A,, on ¥ is not a deterministic automaton in general, and by determinizing it, one loses
the information of which transition of 7,, should be applied. We propose a solution that
overcomes this issue, by integrating the information of R in the state of the left automaton.
Let us detail this construction. We take 7, and project input letters to their ¥ component,
hence we obtain a transducer realizing f which is unambiguous, since Ry has backward
deterministic transitions. Let 7,, denote the obtained transducer, and A,, its underlying
(unambiguous) automaton. We let D be the automaton obtained by determinization, by
subset construction, of the product automaton A, x R ¢. States of D are therefore of the
form 29m**"/=;  The output function w is defined by:

w({(pla [ul])v s (pm [unD} 0, ['U]) = Um(piao')

such that [ov] = [u;]. The state p; is unique since Ty, is unambiguous. Indeed, let us
assume by contradiction that there are two distinct such states p;, p;. This would mean that
[u;] = [u;] and since Ry has backward deterministic transitions, for a word w which reaches
both p; and p; in A,,, we have a labelled word z such that z[k] = w[k]. for k € {1,..., |w|}
and c the class of the word w[k + 1] ... w[|w[]u;. Thus we obtain gy =4, p; and go —>4,, P;
which is in contradiction with the deterministic nature of A,,. We define the final output
functions naturally: A([u]) = in(go,m) and p({(p1, [u1l])- .-, (Dn, [un])}) = t(p;) such that
[u;] = [€] (again, it is unique by unambiguity of Ty,).

It remains to show that B is aperiodic. Aperiodicity of R is obtained by Proposition 5.
Aperiodicity of D is shown in the long version of this paper, as a consequence of the
aperiodicity of T,,, R and the fact that subset construction preserves aperiodicity. |

» Remark. This theorem gives an algorithm to decide aperiodicity of a rational function:
computing the canonical bimachine and checking that it is aperiodic. However, computing
the left automaton Left(R ;) may cause an exponential blow-up. Consider for example, the
transduction f : 3* — ¥* defined for w € ¥*, w, € ¥" by f(ww,) = w, and for |w| < n by
f(w) = w. Since the distance between the image of two words is bounded by 2n, the left
congruence of f is trivial, so the canonical bimachine of f is just a sequential transducer
and needs O(X™) states to remember the last n letters of an input word. However this
transduction can be realized by a right-sequential transducer with only n states, but one
could define a symmetrical example (f(w,w) = w,,) where the bimachine obtained from the
canonical left automaton £ witnesses an exponential blow-up.

Another consequence is that any aperiodic transduction admits an aperiodic unambiguous
transducer realizing it. This problem is open for arbitrary varieties.

» Corollary 8. Fvery aperiodic transduction can be realized by an unambiguous aperiodic
transducer.

Proof. As explained in the proof of the ‘if’ direction of Theorem 7, from any bimachine one
can construct an equivalent unambiguous transducer by taking the product of the left and
right automata of the bimachine, which is aperiodic if the bimachine is aperiodic too. <
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4.2 Characterization through bimachine minimization and main result

In this section, we prove the main result of this paper, i.e. that aperiodicity is PSPACE-
complete for functions realized by bimachines. We show that for a bimachine B it suffices
to construct Left(Right(B)) (or Right(Left(B))) and to check aperiodicity of the resulting
bimachine. The first step can be done in PTIME and the second step in PSPACE. The
operations Left(Right(B)) and Right(Left(B)) are called bimachine minimization, as they
indeed yield minimal bimachines, as shown by the following proposition:

» Proposition 9. Let B be a bimachine realizing a transduction f. Then Left(Right(B)) and
Right(Left(B)) are minimal bimachines realizing f.

Proof. Based on successive applications of Proposition 2 and given in the long version. <«

The following result is a key towards the main contribution:

» Proposition 10. Let f be a transduction realized by a bimachine B = (L, R,w, A, p). Then
f is aperiodic iff Left(Right(B)) is aperiodic iff Right(Left(B)) is aperiodic.

Proof. First, we start by some observation: if there are two bimachines realizing f with
A; C A as right automata, then Leftf(Ag) C Left, (A1). Indeed, if A; provides more (i.e.
finer) information than As on suffixes, then the two equalities of the definition of the right
congruence used to define Left (A1) (see Section 3.2) are “easier” to satisfy since the set
of suffixes v taken into account in the definition of f[w} 4, is included in the set of suffixes
used in the definition of f[w] 4, for all words w. Symmetrically, if there are two bimachines
realizing f with A; C Ay as left automata, then Right;(Az2) T Right ;(Ay).

By Proposition 4 we have L C £y and R C Ry, but also Right(£) T Ry since Pro-
position 4 holds for any bimachine realizing f, and there is a bimachine realizing f with
Right(L) as right automaton (the bimachine Right(B)). Therefore by the observation, we
get Right(L;) C Right(L) and Left(Rf) T Left(Right(L)).

By Theorem 7, if f is aperiodic, then By = (Left(R¢), Rs,w, A, p) is aperiodic. Therefore,
Left(Right(L)) is aperiodic. Symmetrically, exactly as shown in Theorem 7, it can be shown
that £ and Right(Ly) are aperiodic if f is aperiodic, which implies that Right(L) is aperiodic.
In conclusion, Left(Right(B)) is aperiodic. <

We can now prove the main result of this paper:

» Theorem 11. The problem of deciding whether a bimachine B realizes an aperiodic rational
transduction is PSPACE-complete.

Proof. To get the upper-bound, by Proposition 10, it suffices to (i) construct Right(B),
(ii) construct Left(Right(B)), and (iii) test whether the left and right automata of the
bimachine Left(Right(B)) are aperiodic.

By Theorem 3, steps (i) and (ii) can be done in PTIME, while step (iii) can be done in
PSPACE by [5].

The lower bound is obtained from the problem of deciding whether the transition
congruence of a minimal deterministic finite automaton is aperiodic, which is PSPACE-hard
[5]. The details can be found in the long version of this paper. <
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5

Perspectives

In [8] it is proved that deciding whether a regular language given by a non-deterministic

automaton is aperiodic is also PSPACE-complete. As a future work, we want to obtain tight

complexity for the following problem: given a (non-deterministic) transducer, does it define

an aperiodic transduction? Based on the techniques of this paper, the latter problem could

be shown to be in 2EXPTIME, since obtaining the canonical bimachine causes two exponential

blow-ups: one for the canonical right automaton and one for the determinization of the

transducer over the enriched alphabet. It is however yet unclear whether the techniques of

[8] can be combined with the ones of this paper to lower this upper bound.
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