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1 Introduction

Rational synthesis [14, 19] asks to synthesize a system that is executed in an environment
made of several components that are assumed to be rational, and not fully antagonistic as
in the classical two player zero-sum setting [23]. Rationality of the environment is modeled
by assuming that the components behave according to a Nash equilibrium (NE). Rational
synthesis has been introduced in [14, 19] in two different settings.

In the first setting, called cooperative rational synthesis [14], the environment cooperates
with the system: components of the environment agree to play a NE that is winning for
Player 0 (if it exists). In the second setting, called non-cooperative rational synthesis [19],
the components of the environment may follow any strategy, provided that it is a NE. In this
setting, one has to output (if it exists) a strategy σ0 for the system which has to be winning
against all the possible strategy profiles that include σ0 for Player 0 and which are NE.

The main contribution of the original papers is to propose and to motivate the definitions
above. The only computational complexity results given in those papers are as follows: the
cooperative and non-cooperative rational synthesis problems are 2ExpTime-c for specific-
ations expressed in linear temporal logic (LTL), thus matching exactly the complexity of
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121:2 The Complexity of Rational Synthesis

Table 1 Complexity of rational synthesis for k players. Full proofs can be found in [12].

Cooperative Non-Cooperative
Unfixed k Fixed k Unfixed k Fixed k

Safety NP-c PTime-c PSpace-c PTime-c
Reachability NP-c PTime-c PSpace-c PTime-c

Büchi PTime-c[25] PTime-c[25] PSpace-c PTime-c
coBüchi NP-c[25] PTime-c PSpace-c PTime-c
Parity NP-c[25] UP X co´ UP , parity-h ExpTime, PSpace-h PSpace, NP-h, coNP-h
Streett NP-c [25] NP [25], NP-hard ExpTime,PSpace-h PSpace-c
Rabin PNP , NP-h, coNP-h PNP , coNP-h ExpTime, PSpace-h PSpace-c
Muller PSpace-c PSpace-c ExpTime, PSpace-h PSpace-c
LTL 2ExpTime-c[14] 2ExpTime-c[14] 2ExpTime-c[19] 2ExpTime-c[19]

classical zero-sum two-player LTL synthesis [21]. The upper bound is obtained by reductions
to the satisfiability problem of formulas in Strategy Logic (SL) [20]. The reduction to SL
and the use of LTL specifications does not allow one to understand finely the computational
complexity aspects of solving the underlying n player non-zero sum games.

Contributions. To better understand the computational complexity of the rational synthesis
problems and how to solve their underlying games algorithmically, we consider variants of
those problems for games played on turn-based graph structures for reachability, safety,
Büchi, coBüchi, parity, Rabin, Streett and Muller objectives for unfixed and fixed number
of players. The fixed number of players case is interesting as the number of components
forming the environment may be limited to a few in practical applications. Our results are
summarized in Table 1.

On the positive side, our results show that for a fixed number of players, and for objectives
that admit a polynomial time solution in the two-player zero-sum case (reachability, safety,
Büchi and coBüchi), cooperative and non-cooperative rational synthesis can be solved in
PTime. On the negative side, for rich omega regular objectives defined by parity, Rabin,
or Streett objective, the complexity increases. First, games with parity objectives cannot
be solved in polynomial time unless PTime equals NP while it is conjectured that this
result does not hold for two-player zero sum parity games. Second, games with Rabin or
Streett objectives are PSpace-c for the non-cooperative setting while they have solution
in nondeterministic polynomial time for their zero-sum two player versions. When the
number of players is not fixed, the complexity is usually substantially higher than for the
two-player zero-sum case. For example, non-cooperative rational synthesis is PSpace-H for
all objectives, so even for safety objectives.

Cooperative rational synthesis is a special case of constrained NE (Player 0 has to be
winning). The complexity of constrained NE has been studied in [25] for some classes of
objectives: this gives us upper-bounds for cooperative synthesis and Büchi, coBüchi, parity
and Streett objectives. For the other objectives, we show how to extend the approach
proposed in [25]. Solutions to the non-cooperative case are much more involved and based on
a fine tuned application of tree automata techniques. This is a central contribution of our
paper. In particular, our tree automata have exponential size but we show how to test their
emptiness in PSpace to obtain optimal algorithms for Streett, Rabin and Muller objectives
and fixed number of players.

The tree automata that we construct not only allow us to test the existence of solution
to the non-cooperative rational synthesis problem but also to symbolically represent all the
strategies for the system that are solutions. This set is thus regular and can be manipulated
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with automata-based techniques. Also, it should be clear that our algorithms are amenable
to symbolic implementations when the game structure is given with binary decision diagrams.
This is important as it shows that our techniques pave the way to implementations that have
proven useful and efficient by the CAV community (see e.g. tools like nuSMV [11]).

To obtain lower-bounds, we design original and informative reductions.

Related work. Non-zero sum games for synthesis are gaining attention recently, see e.g. [4]
for a survey. Secure equilibria were introduced in [9] and their potential for synthesis was
demonstrated in [8]. Secure equilibria is a refinement of NE [24]. Doomsday equilibria
extend secure equilibria to the n player case [7]. Subgame perfect equilibria, that also refines
NE, were first studied in [24, 25]. To model rationality of players, the notion of admissible
strategy is used in [3, 13] instead of the notion of NE, and computational aspects are studied
in [6], potential for synthesis is studied in [5]. All those works consider games played on
a game structure with classical ω-regular objectives and provide tight complexity results
for almost all the relevant synthesis problems. This is not the case for cooperative and
non-cooperative rational synthesis for which only the complexity for specifications given
in LTL was known [14, 19]. This paper provides algorithms and precise computational
complexity results.

Structure of the paper. In Sect. 2, we recall the definition of the cooperative and non-
cooperative synthesis problem as introduced in [14, 19], together with the game structure
variant and objectives that we study here. Sect. 3 provides lower and upper complexity
bounds for the cooperative rational synthesis problem. Sect. 4 provides results for the
non-cooperative variant. Sect. 5 summarizes complexity results when the number of players
is fixed. Due to the lack of space, we provide sketches of proof of our results in this paper
and all the detailed proofs can be downloaded at the following address: [12].

2 Multiplayer Games and Rational Synthesis

Multiplayer Games. Let k P N. A multiplayer arena (k ` 1)-players arena is a tuple
A “ xΩ, V, pViqiPΩ, E, v0y, where Ω “ t0, 1, ..., ku is a finite set of players, pV,Eq is a finite
directed graph whose vertices are called states, v0 P V is the initial state and pViqiPΩ is a
partition of V where Vi is the set of states controlled by Player i P Ω. A play in A starts in
the initial state v0 and proceeds in rounds. At each round, the player controlling the current
state chooses the next position according to E Ď

Ť

iPΩ Vi ˆ Vi`1 mod k.1. Formally, a play
π “ v0v1 . . . is an infinite path in V ω such that v0 is the initial state and pvi, vi`1q P E for
each i ě 0. The prefix (or history) of π up to vn is written πr:ns and its last state πpnq. We
denote by Ă the prefix relation, by PlayspAq the set of plays, and by PrefspAq for its set of
finite prefixes. For πPV ω, infpπq is the set of states occurring infinitely many times in π.

A strategy of Player i P Ω in A is a total function σi : V ˚Vi ÞÑ V s.t. for all x P V ˚, for all
v P Vi, pv, σipxvqq P E. Note that as rounds are ordered, σi has type V ˚Vi ÞÑ Vi`1 mod k. A
play π is consistent with σi if πpn` 1q “ σipπr:nsq for all n ě 0 s.t. πpnq P Vi. The outcome
of σi is the set of plays outpσiq Ď PlayspAq that are consistent with σi. Given h P V ˚, we
define σi|h as σi|hph1q “ σiphh

1q for all h1 P V ˚Vi. A winning objective (or just objective) is

1 Wlog. we assume that each vertex has a successor by E and that player’s rounds are ordered according
to their index. Otherwise we just add a polynomial number of extra intermediate states and the winning
objectives considered in this paper can be modified accordingly.

ICALP 2016



121:4 The Complexity of Rational Synthesis

a set O Ď V ω. It is tail if it is closed under removing prefixes. A Player i’s strategy σi is
winning2 for O if outpσiqĎO. We consider the classical classes of objectives [17]:

Safety/Reachability: Given a set S Ď V of safe states, SafepSq “ tπ P V ω |@n ě 0 : πpnq P
Su and given a set T of target states, ReachpT q “ tπ P V ω | Dn ě 0 : πpnq P T u “ SafepT q.
Büchi/coBüchi: Given a set F Ď V , BuchipF q “ tπ P V ω | infpπq X F ‰ ∅u and
coBuchipF q “ tπ P V ω | infpπq X F “ ∅u “ BuchipF q.
Streett/Rabin: Given a set Ψ Ď 2V ˆ 2V , StreettpΨq “

Ş

pL,RqPΨpcoBuchipLq Y BuchipRqq
and RabinpΨq “

Ť

pL,RqPΨpBuchipLq X coBuchipRqq “ StreettpΨq.
Parity: For a priority mapping p:VÑN, Parityppq“tπPV ω | mintppvq|v P infpπqu is evenu.
Muller : Given a Boolean formula µ over V , Mullerpµq “ tπ P V ω | infpπq |ù µu.

A multiplayer game is a pair G “ xA, pOiqiPΩy where pOiqiPΩ is the tuple of objectives
for each Player i P Ω. For all class of objectives X, we say that G is a multiplayer X-game
if all objectives Oi are in X. The notations Plays and Prefs carries over naturally to G by
considering its underlying arena. For v P V , one denotes by Grvs the game G whose initial
state is replaced by v (winning objectives are unchanged). A state v P V is winning for
Player i if he has a winning strategy in Grvs, and one denotes by WG

i (or just Wi) the set of
winning states of Player i, also called the winning set of Player i.

Nash Equilibria. A strategy profile σ̄ in a multiplayer game G “ xA, pOiqiPΩy is a tuple
σ̄ “ pσiqiPΩ of strategies, one for each player. The outcome outpσ̄q of σ̄ is the only play
consistent with all strategies σi (it always exists and is unique). Given a strategy τ for
Player i, we write pσ̄´i, τq for the strategy profile obtained by replacing σi with τ in σ̄. For
winning objectives pOiqiPΩ for each player, the payoff of a strategy profile σ̄ is the vector
paypσ̄q P t0, 1utk`1u defined by paypσ̄qris “ 1 iff outpσ̄q P Oi. We write payipσ̄q for Player i’s
payoff in paypσ̄q. Payoffs are compared by the pairwise natural order on their bits, denoted
by ď, i.e. paypσ̄q ď paypβ̄q if payipσ̄q ď payipβ̄q for all i P Ω.

A strategy profile σ̄ “ pσiqiPΩ is called a Nash equilibrium (NE) if no player can improve
his payoff by (unilaterally) switching to a different strategy, i.e. for all players i P Ω and all
strategies τ of Player i, paypσ̄´i, τq ď paypσ̄q. We say that σ̄ is a 0-fixed Nash equilibrium
(0NE) if paypσ̄´i, τq ď paypσ̄q for all players i P Ωzt0u and all strategies τ of i. In other
words, it is a Nash equilibrium in which Player 0 is not allowed to deviate. Any NE is 0-fixed,
but the converse may not hold.

Cooperative and non-cooperative rational synthesis. Rational synthesis aims at finding
a winning strategy for the system (Player 0) against an environment composed of several
components (Players 1 to k) that are assumed to play rationally. Rationality of the envir-
onment is modeled by NE, and following [14, 19], we consider two settings, depending on
whether the environment cooperates or not: The cooperative and non-cooperative rational
synthesis problems (CRSP and NCRSP resp.) ask, given as input a pk ` 1q-player game G
with winning objectives pOiqiPΩ, the following questions according to the two settings:
cooperative: Is there a 0-fixed Nash equilibrium σ̄ such that pay0pσ̄q “ 1 ?
non-cooperative: Is there a strategy σ0 for Player 0 such that for every 0-fixed Nash

equilibrium σ̄ “ xσ0, . . . , σky, we have pay0pσ̄q “ 1 ?

2 Here we implicitly consider a two-player zero-sum game in which Player i has objective O and plays
against all the other players in Ωztiu who have objective O.
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1start 2 3

Figure 1 Example for rational synthesis.

I Example 1. Consider Figure 1 in which Player 0 owns round states and Player 1 square
states, with the reachability objectives R0 “ t2u and R1 “ t3u. Consider the Player 0’s
strategies σ0 which loops forever in state 2, and σ10 which eventually moves to state 3.

Let Player 1 cooperate with σ1 that moves to state 2 (making Player 0 win). Both
strategy profiles xσ0, σ1y and xσ10, σ1y are solutions to the cooperative setting: for the first
strategy profile Player 1 loses but cannot get better payoff by deviating, and for the later
one Player 1 wins. Strategy σ0 is not a solution to the non-cooperative setting: Player 1
could stay forever in state 1 (according to a strategy σ11). The profile xσ0, σ

1
1y is a 0-fixed

NE because even by deviating and going to state 2 Player 1 would still lose, and it is losing
for Player 0. However, σ10 is a solution to the non-cooperative setting: The only 0-fixed NE
in that case are when Player 1 eventually move to state 2, making him and Player 0 win.

In [14, 19], both CRSP and NCRSP are shown 2Exptime-complete when the winning
objectives are defined by LTL formulas, through a reduction to strategy logic. In this paper,
we refine this complexity result for particular kinds of winning objectives. In general, the
synthesis problem also asks to synthesise (i.e. construct) a solution when it exists: Our
algorithms also solve the synthesis problem.

3 Cooperative Rational Synthesis Problem (CRSP)

We establish here complexity bounds for CRSP for unfixed number of players. First, some
results are obtained as special cases of constrained NE problems [25]. The constrained NE
problem asks to decide, given a k ` 1-player game G “ xA, pOiqiPΩy, and for each player i, a
lower bound li P t0, 1u and an upper bound ui P t0, 1u such that li ď ui, whether there exists
a NE σ s.t. li ď payipσq ď ui for all i P Ω. CSRP is a special case of this problem, by setting
l0 “ u0 “ 1, li “ 0 and ui “ 1 for all i P Ωzt0u. The constrained NE problem is known to be
in PTime for Büchi objectives, and in NP for co-Büchi, Streett and parity objectives [25].
So one immediately gets the upper bounds of Table 1 for these measures (and unfixed k).

To establish the remaining upper bounds, we characterize NE by means of LTL formulas.
We extend the technique used in [25] for tail objectives to safety and reachability.

Generic solution to cooperative rational synthesis. Syntax and semantics of LTL can be
found in [2]. Let V be the set of vertices of G. We use LTL formulas to express properties
of infinite paths of G, where we take V as set of atomic propositions. In particular, s P V
is true in s, and false otherwise. For S Ď V , the formula S is a shortcut for

Ž

sPS s, and
LTLpGq denotes the set of LTL formulas over V . Let pWG

i q0ďiďk be the winning sets of each
player and b P t0, 1u. We define an LTLrGs-formula φG

bNash that will characterize NE (b “ 1)
and 0-NE (b “ 0):

φG
bNash “

$

’

’

’

&

’

’

’

%

Źk
i“1´bpp W

G
i U  Siq _lSiq if Oi are safety objectives of the form

Oi “ SafepSiq for Si Ď V
Źk
i“1´b ϕi Ñ l WG

i if Oi are either all reachability or all tail
objectives definable by a LTLrGs formula ϕi

ICALP 2016



121:6 The Complexity of Rational Synthesis

Assume that b “ 1, and consider the formula for safety objectives. Intuitively, it says that for
all players i P t0, . . . , ku, either Player i always stays safe, or if eventually he visits an unsafe
position, then he should never visit a winning position until he meets an unsafe position for
the first time. This is because otherwise he could apply a winning strategy and satisfy his
own objective, and therefore has some incentive to deviate. As announced:

I Proposition 2 (Characterization of 0-fixed NE and NE ([25] for tail objectives)). Let G be
a multiplayer game with either all safety, all reachability, or all tail objectives, definable in
LTLrGs. Then, the following hold:
1. For all π P PlayspGq, if π |ù φG

0Nash (resp. π |ù φG
1Nash), then there exists a 0-fixed NE

(resp. NE) σ̄ in G such that outpσ̄q “ π,
2. For all 0-fixed NE (resp. NE) σ̄ in G, outpσ̄q |ù φG

0Nash (resp. outpσ̄q |ù φG
1Nash).

Based on the latter proposition, it is not difficult to design a procedure to decide CRSP:
first, compute the winning sets Wi, and then check whether the game G contains a path
which satisfies the formula φG

0Nash ^ φ0, where φ0 is the objective of Player 0, expressed
in LTLrGs. To establish precise upper bounds, one needs to consider the complexity of
computing the winning sets, and then the complexity of model-checking these particular LTL
formulas. Due to lack of space, we cannot cover all the cases, but let us briefly expose the
case of safety conditions. For safety, it is well-known that computing the sets Wi can be done
in PTime. Then, we prove a short witness property: if there exists a path satisfying the
formula φG

0Nash ^ φ0, then there exists a lasso path uvω such that u and v have polynomial
length. Therefore, it suffices to guess such a lasso path, and to check that it satisfies the
formula φG

0Nash ^ φ0, which again can be done in PTime. This yields an NP algorithm for
safety CRSP. Similar arguments apply for reachability.

Lower bounds. In [25] was shown the NP-hardness of the threshold NE problem for coBüchi
objectives and thresholds l0 “ u0 “ 1, li “ 0 and ui “ 1, @i P t1, . . . , ku. Therefore, one
immediately gets the NP lower bounds of Table 1 for coBüchi objectives, Streett, Rabin and
parity objectives, which can (polynomially) express coBüchi objectives. For the other cases,
we provide lower bounds with genuine reductions. For Muller objectives, we show that it is
already PSpace-hard even for two players and the precise complexity results for a fixed
number of players are discussed in the last section of the paper. We finish the section by
showing the NP-hardness proof for the safety case (which was not considered in [25]).

I Lemma 3. CRSP for multiplayer safety objectives is NP-hard.

Proof. By reduction from 3SAT . Given a set of clauses S “ tC1, . . . , Cku, one constructs
the pk ` 1q-player safety game of Fig. 2. Up to vertex C1, the previous states are controlled
by Player 0, and each state Ci is controlled by Player i. All states but Us are safe for Player
0. For all i P t1, . . . , ku, Ue is unsafe for Player i, as well as the state 0x if  x appears in
Cj , and the state 1x if x appears in Cj . If S is satisfiable by some valuation ν, then Player
0 chooses, in state x, the successor νpxqx. That way, Player 1 to k have visited an unsafe
state before reaching C1, and have no incentive to deviate if their strategy is to go to Ue.
Conversely, if there is a solution to CRSP, necessarily the game end up in Ue, as Player 0
must be winning. It means that before reaching the states Ci all safety conditions for Players
1 to k have been violated, otherwise going to Us could be a profitable deviation. In other
words, for all clauses i, there exists a literal ` in Ci such that 1x (resp. 0x) has been visited
if ` “ x (resp. if ` “  x). So the truth values chosen by Player 0 satisfies S.

J
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1x1
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Figure 2 Cooperative Safety: Reduction from 3-SAT.

4 Non-Cooperative Rational Synthesis Problem (NCRSP)

We study here the complexity of NCRSP for unfixed number of players. In this setting,
cooperation of the environment is not assumed, and so the system has to win against all
0-fixed NE. In Prop. 2, we have characterised 0-fixed NE by means of an LTL formula φG

0Nash.
This allowed us to solve CRSP via a reduction to model-checking. It is tempting to think
that NCRSP reduces to a two-player zero-sum game between Player 0, whose objective is
φG

0Nash Ñ ϕ0, and the coalition of the other players. However, Example 1 shows that this is
not true in general. Indeed, in this example there is a solution to NCRSP, but no solution
to the two-player game with objective plR̄1 Ñ lW̄1q Ñ ♦R0. Since W1 “ t3u, whatever
the strategy of Player 0 is, if Player 1 stays in state 1 forever, the path π “ p1qω satisfies
plR̄1 Ñ lW̄1q but not ♦R0 and therefore Player 0 loses. The intrinsic reason why the
reduction to two-player games is incorrect lies in the definition of NCRSP: once a Player 0’s
strategy σ0 is fixed, only 0-fixed NE with respect to σ0 are considered, while the formula
φ0Nash can be satisfied by paths which are outcomes of other 0-fixed NE, i.e. for a different
strategy of Player 0.

The non-cooperative case is more involved and requires tree automata based techniques:
we see strategies σ0 as trees tσ0 , and use tree automata to define the set of solutions to
NCRSP. Testing existence of a solution then reduces to tree automata non-emptiness.

Strategy trees and good deviations. Let Λ be a finite set of directions and Σ be an alphabet.
A Σ-labeled Λ-tree is a mapping t : Λ˚ Ñ Σ. Its set of nodes is Λ˚. Let A be a k ` 1-player
arena with set of states V , and let σ0 : V ˚V0 Ñ V be a strategy of Player 0 in A. We explain
how σ0 is encoded as a tree. The labels are in the set Σ “ V Y t˚i | 1 ď i ď ku Y t#u, and
the set of directions is Λ “ V . Therefore, any node of the tree is a history h. Then, if h “ ε

(root node), we set its label to #. Otherwise, it is of the form h “ h1v, then there are two
cases: piq if v P V0, then tσ0phq “ σ0phq, piiq if v P Vi for i ‰ 0, then tσ0phq “ ˚i (only the
turn i is encoded). We denote by T0 the set of strategy trees tσ0 . Note that each Σ-labeled
V -tree represents a partial function from V ˚ to Σ, which may not be a strategy, because
it is not total and may not be consistent with the edge relation E of the arena. A branch
in tσ0 is an infinite sequence of directions π P V ω. It is compatible with σ0 if for all finite
prefixes h of π whose last state is in V0, h.tσ0phq is a prefix of π.

We now want to characterize the strategy trees tσ0 s.t. σ0 is a solution to NCRSP in a
game G “ xA, pOiqiPΩy with either all safety, all reachability, or all tail objectives. Consider
a branch π of tσ0 compatible with σ0: It is not the outcome of a σ0-fixed NE iff some
player loses (π R Oi for some i ‰ 0) and there is a prefix h from which Player i has a
winning strategy against all other players (and the strategy σ0). We call the history h a good
deviation point. Formally, h is a good deviation point if there exists i P t1, . . . , ku “ Ωzt0u
s.t. π R Oi and there is a strategy σi for Player i s.t. for all strategies pσjqiPt1,...,kuztiu,
h.outpσ0|h, ..., σi´1|h, σi|h, σi`1|h, ..., σk|hq P Oi. A branch π P V ω has a good deviation if
some of its prefix h is a good deviation point. Let us denote by NCRSPpGq the set of strategy
trees tσ0 such that σ0 is a solution to the NCRSP in G. Then:

ICALP 2016



121:8 The Complexity of Rational Synthesis

I Lemma 4. For all strategies σ0 of Player 0, tσ0 P NCRSPpGq iff for all branches π of tσ0

compatible with σ0, either π P O0 or π has a good deviation.

Reduction to tree-automata emptiness. Based on Lemma 4, we construct a non-deterministic
automaton defining NCRSPpGq. A non-deterministic tree automaton T over Σ-labeled Λ-trees
is a tuple pQ,Q0, δq where Q is a finite set of states, Q0 Ď Q is a finite set of initial states,
and δ is a transition relation of the form δ : Qˆ Σ Ñ 2ΛÑQ, i.e., it maps any pair of states
and labels to a set of mappings from directions to states (states sent the children of the
current node). A run of T on a tree t is Q-labeled Λ-tree r : Λ˚ Ñ Q such that rpεq P Q0
and for all h P Λ˚, all d P Λ, the mapping d P Λ ÞÑ rphdq P Q is in δprphq, tphqq. The image
of a branch π “ λ1λ2 ¨ ¨ ¨ P Λω by r is the word in Qω defined by rpεqrpλ1qrpλ1λ2q . . . . With
respect to an accepting condition α Ď Qω, r is accepting if the images of all its branches are
in α, and the language of T is the set LαpT q of trees for which there exists an accepting run.

I Lemma 5. Let G “ xA,O “ pOiqiPΩy be a pk ` 1q-player game with n vertices. One
can construct a non-deterministic tree automaton TA (with an exponential number of states
in k, and polynomial in |V |) with an accepting condition αApOq such that LαApOqpTAq “

NCRSPpGq. Moreover, for all runs r of TA, for all branches π of r, the number of states
appearing in π is polynomial in |V | and k.

Proof. We sketch the construction of TA and the definition of αApOq. First, it is not difficult
to make sure that TA only accepts trees that are strategy trees: It has to remember the last
direction v taken and make sure that if v P V0, the current node is labeled by some v1 P V
s.t. pv, v1q P E, and otherwise by the symbol ˚i if v P Vi. This requires only a polynomial
number of states. Therefore in the following, we assume that TA only runs on proper tree
encodings tσ0 of strategies σ0.

The construction of TA is based on Lemma 4: For each branch of tσ0 , it will check that
either it is not compatible with σ0, or it belongs to O0, or it will guess a prefix and check it is
a good deviation. To guess good deviations, TA has to guess subtrees in which players have a
winning strategy. This information is stored in a set W Ď Ω, with the following semantics: if
TA is in some state with set W at some node h P V ˚ and i PW , then Player i has a winning
strategy from h against σ0 and any strategy of the players in Ωzt0, iu for objective Oi. The
set of players for which a good deviation has been guessed is stored in a set D Ď Ω, with
the following semantics: if TA is in some state with set D and i P D, at some node h P V ˚,
then some prefix of h is a good deviation. The information on W is maintained as follows:
at some node hv P V ˚, if i PW and v P Vi, then TA non-deterministically send W to one of
the successor of v (and W ztiu in the other ones) and if v R Vi, TA sends W in all successors
of v. The information D is monotonic: either the current node h (owned by Player i) is not
guessed to be a good deviation for any player and D is sent to all successors, or it is guessed
to be a good deviation for Player i, i R D, and then DY tiu (and W ) is sent to all successors
but one in which is sent D and W Y tiu. This monotonic behavior is crucial for obtaining
algorithms with optimal worst-case complexities.

Formally, TA “ pQ, tq0u, δq with Q “ tq0,Ju Y p2Ω ˆ 2Ω ˆ V q. Then, we have δpq0,#q “
tρ0u where ρ0pv0q “ pH,H, v0q and ρ0pvq “K for all v ‰ v0. For all q “ pW,D, vq P Q such
that v P V0 and all v1 P V , δpq, v1q “ tρv1u where ρv1pv1q “ pW,D, v1q and ρv1pv2q “K for
all v2 ‰ v1 (the latter case correspond to directions v2 which are not compatible with the
strategy). For all v ‰ #, δpJ, vq “ tρJu where ρJpv1q “ J for all v1 P V . Then, for a state
q “ pW,D, vq and a label ˚i (i ‰ 0), we consider four cases:
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1. i P D XW : Such a state will never be reachable by construction.
2. i P D XW : In this case, we just propagate the information D and W . I.e. δpq, ˚iq “ tρu

s.t. ρpv1q “ pW,D, v1q for all pv, v1q P E.
3. i PW XD: In this case, one has to check that Player i has a winning strategy in some

successor of v1, which is guessed non-deterministically, and to which the W information
is sent. I.e. δpq, ˚iq “ tρv1 | pv, v1q P Eu where ρv1pv1q “ pW,D, v1q and ρv1pv2q “

pW ztiu, D Y tiu, v1q for all v2 ‰ v1.
4. i PW XD: In this case, either we do not guess anything, or we guess that Player i has

a good deviation, and update the sets W and D accordingly. I.e. δpq, ˚iq “ tρu Y tγv1 |

pv, v1q P Eu where γv1pv1q “ pW Ytiu, D, v1q and γv1pv2q “ pW,DYtiu, v1q for all v2 ‰ v1.

Along a path of a run of TA, there are monotonicity properties for the W and D-
components of the states. Indeed, by construction, TA never removes a player from D. For
W , a player i can be removed (case 3) but then it is added to D and, once a player belongs
to D, it can never be added to W again. It is correct since for a history h, if one guesses
that Player i has a winning strategy from history hv, then i is added to D for all successors
hv1 (v1 ‰ v) and there is no need to guess again later on a good deviation for Player i in the
subtrees rooted at the nodes hv1, and therefore no need to add i in W again. Therefore along
a path η of a run, there is only a polynomial number of different components D and W , and
they necessarily stabilize eventually, to a set that we denote by limDpηq and limW pηq.

Finally, the accepting condition αApOq asks that on each path of the accepting run, either
it is of the form Q˚tKuω, or Player 0 wins, or there is a player that loses but belongs to
some D eventually. For safety objectives, we also have to add the constraint that the losing
player belongs to D before visiting an unsafe state. Additionally, the accepting condition
also expresses constraints on the W components: each player i P limW pηq wins. Formally,
if we denote by IRunspTAq the set of images of branches of runs of TA, and by η|V the
V -projection of any η P pQztKuqω, we have:
αApOq “ Q˚tJuωYptη P IRunspTAqXpQztJuq

ω | η|V P O0_
k
ł

i“1

`

η|V R Oi^ϕDdevpi, ηq
˘

uX

X tη P IRunspTAq X pQztJuq
ω |

ľ

iPlimW pηq

η|V P Oiuq

where the formula ϕDdevpi, ηq says that there is a good deviation for Player i. That is, if
D0D1 . . . is the sequence of D-components in η, then ϕDdevpi, ηq “ i P limDpηq for tail or
reachability objectives, and ϕDdevpi, ηq “ Dp ě 0, i P Dp ^ @p

1 ď p, η|V rps P Si for safety
conditions SafepSiq. Details can be found in the technical report. J

Tree automata emptiness. We now study the complexity of testing non-emptiness of the
languages LαApOqpTAq for the objectives O of this paper. Classically, non-deterministic tree
automata emptiness is reduced to solving a two-player zero sum game between Eve, who
constructs a tree and a run on this tree, and Adam, whose goal is to prove that the run is
non-accepting, by choosing directions in the tree and falsifying the acceptance condition.
Formally, remind that the alphabet is Σ “ V Y t˚i | 1 ď i ď ku Y tKu and for a function
f : V Ñ Q, we denote by Rangepfq its range. We construct a zero-sum two-player game
G1 “ xVE , VA, E1, q0y where VE “ Q, VA “ tRangepfq | Dq P Q,α P Σ, f P δpq, αqu. Then,
the transition relations is defined for all q P Q, all P P VA, by pq, P q P E1 if there exists
α P Σ and f P δpq, αq s.t. P “ Rangepfq, and pP, qq P E1 if q P P . That is, to go from q to
P , Eve chooses a symbol α and a function f : V Ñ Q in δpq, αq. Then, Adam chooses a
direction in V , but since he wants to construct a sequence of states not in αApOq, one only
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needs to remember Rangepfq. Adam then picks a state in that set. Eve’s objective is the
set tq1w1q2w2 ¨ ¨ ¨ P pVEVAq

ω | q1q2 ¨ ¨ ¨ P αApOqu. It can be shown that Eve has a winning
strategy in G1 iff LαApOqpTAq ‰ H. By a fine analysis of solving this game, we obtain:

I Proposition 6. Let G “ xA,O “ pOiqiPΩy be a multiplayer game. Non-emptiness of
LαApOqpTAq can be checked in PSpace for O P tSafety,Reachability,Büchi, coBüchiu, and in
ExpTime for O P tParity,Streett,Rabin,Mulleru.

Proof. It amounts to study the complexity of solving G1 for the objectives of this paper.
Note that the arena of G1 has linear size in the size of TA. For safety, reachability, Büchi
and coBüchi winning objectives, we reduce the problem of solving G1 to a finite duration
reachability tree game of exponential size, whose duration is polynomial (in the size of the
original arena of G). This reduction exploits the monotonicity of the sets W and D, and the
fact that the game can be stopped once a cycle has been formed. It is similar in spirit to
the technique of first-cycle game from [1] but the winning condition of G1 do not fall in the
general hypothesis of [1] under which infinite duration games reduce to first-cycle games.
Our finite duration tree game, though of exponential size, is not constructed explicitly but
solved on-the-fly by a PTime alternating algorithm. This gives a PSpace upper-bound for
NCRSP.

We now study the complexity of solving G1 when the original game G has Muller conditions
Mullerpµiq for the k ` 1 players. We transform G1 into a two-player zero-sum parity game
with an exponential number of states but a polynomial number of priorities, which can be
solved in ExpTime (in the size of G). This reduction is based on the Last Appearance Record
(LAR) [15, 26], which allows us to identify states in V appearing infinitely often. Formally, V
is assumed to be linearly ordered, i.e. V “ tv1, . . . , vnu. We let P pV q the set of permutations
of V , which we represent by words of length n over V with pairwise different letters. We
define a deterministic finite automaton LARV “ pP pV q ˆ t0, . . . , |V | ´ 1u, pm0, h0q,Ñq,
m0 “ v1 . . . vn and h0 “ 1, and pm,hq v

ÝÑ px1x2v, |x1|q where m “ x1vx2 P P pV q for some
x1, x2 P V

˚ and v P V . Positions h are called hits. LARV has the following property: take
a sequence π P V ω and the associated sequence of LARV ’s states ` “ pm0, h0qpm1, h1q . . . ,
let hπmin be the smallest hit appearing infinitely often in `, then the sequence of subsets
ptmirrs | r ě hπminuqiě0 eventually equals infpπq.

Remind that Q “ tq0,JuYp2Ωˆ2ΩˆV q, therefore each sequence of states not in Q˚tJuω
also gives the sequence of visited vertices of G. We take the product of G1 with LARV to
add LAR information to the game G1, and transform Eve’s winning condition in G1 into a
parity condition pr in this product as follows: one uses 2|V | ` 2 priorities and, for product
states with q0 or J as first component, the priority is 0, otherwise for states of the form
ppW,D, vq, pm,hqq, we let:

prppW,D, vq, pm,hqq “

$

’

’

&

’

’

%

2h if @i PW, tmrrs | r ě hu |ù µi and
ptmrrs | r ě hu |ù µ0 or Di P D s.t. tmrrs | r ě hu |ù  µiq

2h` 1 otherwise

For states whose first component belongs to Adam, we just put priority 2|V | ` 2, so that
they have no influence. That way we obtain a parity game Gpar with an exponential number
of states (in G) but a polynomial number of priorities, in which Eve has a winning strategy
iff she has a winning strategy in G1. Finally, parity games can be solved in PTime in the
number of states and exponential in the number of priorities [18, 22]. J
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Figure 3 The arena Aψ used to show that NCRSP is PSPACE-h.

I Theorem 7. For multiplayer games, NCRSP is in ExpTime for objectives of type X P

tParity, Streett,Rabin,Mulleru and in PSpace if X P tSafety,Reachability,Büchi, coBüchiu. It
is PSpace-hard for all objectives.

Proof. The upper-bounds are consequence of Lemma 4, Lemma 5, and Proposition 6.
Let us establish the lower bounds. Our proof is a reduction from QBF which uniformly
works for all the types of objective. Let ψ “ Dx1@x2...Dxmγpx1, x2, ..., xmq be a QBF in
3CNF with k clauses C1, C2, ..., Ck. We build a 2m ` 2 players game Gψ, with players
Ω “ tA,B, P10, P11, P20, P21, . . . , Pm0, Pm1u, the system being played by player A, such that
ψ is true if and only if Gψ admits a solution to the NCRSP. The arena Aψ of the game is
depicted in Figure 3.

For each existential (resp. universal) variable xi in ψ, the arena Aψ contains a rounded
(resp. diamond) state xi controlled by Player A (resp. player B). For each node xi, 1 ď i ă m,
Aψ contains the edges pxi, 0xi

q, pxi, 1xi
q, as well as the edges p0xi

, xi`1q, p1xi
, xi`1q, choices

of edges in those states naturally encode valuations of the variables of the QBF formula.
For each 1 ď i ď m, the rectangle state 1xi (resp. 0xi) is controlled by player Pi1 (resp.

Pi0) and has an additional edge leading to the self-loop over the state v2i´1 (resp. v2i). The
value nodes 1xm , 0xm (for the last variable xm) are then connected to a vertex z controlled by
Player B. From there Player B can choose a clause, i.e. an edge pz, Ciq, 1 ď i ď k. Finally,
each state associated to a clause Ci is controlled by Player A and has three outgoing edges
toward the terminal nodes (with self-loops) li1, li2, li3, one for each literal in Ci.

Given the arena described above for the X-game Gψ, it is easy to phrase with the different
types of objectives, the following winning conditions:
1. All paths that end in a state labeled with vi (1 ď i ď 2m) are winning for all the players.
2. All paths that end in a state labeled with lij (1 ď i ď k, 1 ď i ď 3) are winning for all the

players but Player A and Player Phb such that plij “ xh ^ b “ 1q _ plij “  xh ^ b “ 0q.

Let us establish the correctness of our reduction. Assume that ψ is true. Then, the
existential player has a winning strategy in the QBF game associated to ψ, i.e. he can choose
the value of existentially quantified variables xi as a function of the values given by the
universal player to the universally quantified variables xj , with j ď i, so that ψ evaluates to
true. We claim that, if Player A plays in the game arena according to such a winning strategy
of the existential player, then Player A wins his objective whenever the other players play a
NE. Indeed, there are two possibilities: either the game ends in a looping state labeled with
vi, and all players win (including Player A) or the game reaches z where Player B chooses
a clause. As the strategy played by Player B encodes a winning strategy of the existential
player in the QBF game, we know that each clause is satisfied, so Player A can choose a
literal that evaluates to true in the clause. With such a choice, he makes sure that the player
associated to this literal is losing while the play has visited a state in which this player has
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decided to continue the game instead of going to a looping state labeled with vi. This means
that this player has a profitable deviation in the profile associated to the outcome of the
game and so this outcome of the game is not a NE.

Otherwise, ψ is false. Then the universal player has a winning strategy in the QBF game
associated to ψ. Consider a strategy profile where Player B plays according to this strategy
and each Player Pib, 1 ď i ď m, b P t0, 1u, plays to continue the game and avoid looping
states labelled by vi. Then the game reaches state z, and Player B can choose a clause
Ci that is false according to the instantiation of variables along the path followed so far.
Therefore, for any choice of Player A from Ci, the play will be winning for all the players
with the exception of Player A, and the player associated to the literal that has been chosen
by Player A in the clause. This outcome is part of a NE as the later player cannot improve
on his payoff by deviating as in the current profile, the play does not visit the rectangle
state associated to the literal that evaluates to false, and so he has no available deviation at
all. J

5 Fixed number of players

Several instances of the rational synthesis problems become tractable for fixed number of
players. The number of players is a natural parameter to study: in practical applications,
the number of components composing the environment may be limited to a few.

Cooperative Setting. We provide a generic reduction for the lower bounds of Table 1.

I Lemma 8. Let X P tSafety,Reachability,Büchi, coBüchi,Parity,Streett,Rabin,Mulleru.
Given a two-player zero-sum game between players A and B with an objective of type
X for Player A, we can construct a multiplayer game with objective of type X with two
players Ω “ t0, 1u such that Player A does not have a winning strategy in the zero-sum game
if and only if the multiplayer game is a positive instance of the CRSP problem.

Proof. Let G be a two-players zero-sum game where the protagonist (player A) has the
objective ψ, and so Player B has objective  ψ. We construct the two-players CRSP G1 by
considering a copy of G and two fresh states v and w. The state v is the initial state of G1
and has a transition to the initial state of G and a transition to w, which is equipped with a
self-loop. The environment (Player 1) controls v, w and the states belonging to Player A
in G, while the system (Player 0) controls the states belonging to Player B in G. For the
winning conditions, Player 0 wins only if the play gets into w (and stays there forever), while
the objective of the environment is ψ ( i.e. the objective of Player A in G).

G1 is a positive instance of the CRSP problem iff Player 1 playing edge v Ñ w is a NE.
But clearly Player 1 does not have an incentive to deviate iff Player A does not have a
winning strategy in G for forcing ψ. J

As an example, we get NP-hardness for the CRSP problem with Streett objectives because
two-player zero-sum Streett games are coNP-hard.

The upper bounds on k-fixed CRSP for X P tReach,Safe,Büchi, coBüchi,Parity,Rabinu
listed in Table 1 can be obtained with the following procedure. First, compute the winning
sets Wi for each of the k ` 1 players using the classical algorithms to solve two-player
zero-sum games (w.r.t. the corresponding objective) and label the arena with the information
pWiqiPΩ (seen as atomic propositions). Then, check whether there is a path π such that
π |ù ϕ0 ^ φG

0Nash (witnessing a solution to CRSP, by Proposition 2). The first step can
be done in polynomial time for X P tReach,Safe,Büchi, coBüchiu, in UPXcoUP for parity
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conditions and in PNP for Rabin conditions (as checking whether a state belongs to Wi is in
NP). Due to the assumption that k is a fixed constant, the second step can be done in PTime
for X P tReach,Safe,Büchi, coBüchi,Parityu and in NP for Rabin conditions. For Streett
k-fixed CRSP, an NP upper bound was given in [25]. For Muller objectives, by Lemma 8,
the problem is PSpace-hard and the PSpace upper bound follows from the unfixed case.

Non-Cooperative Setting. Results are summarized in the last column of Table 1. We start
by the justification of the lower bounds. First, it should be clear that deciding the winner
in a zero-sum two-player game with objective of type X is a special case of the NCRSP
problem. Indeed, assume Player A has objective ψ in a game G. Then, if we give objective ψ
to Player 0 on the same game arena and declare all plays winning for Player 1, it is easy to
see that this is a positive instance to the NCRSP problem iff Player A has a winning strategy
in G for ψ. So this explains all the lower bounds but for X P tParity,Streett,Rabinu. In the
long version of this work [12], we provide a Pspace lower bound also to Streett and Rabin
k-fixed NCRSP. This is done in two steps: first a reduction from QBF to zero-sum two-player
Muller games is provided, similar to the one given in [16]. Then, the latter is reduced to a
Street (resp. Rabin) NCRSP with two players. Finally, the lower bounds for parity k-fixed
NCRSP reported in Table 1 have been obtained by reduction from the generalized parity
games considered in [10], where the objective is a disjunction (dually, a conjunction) of parity
conditions. In particular, we have proven that NCRSP on 3-players (resp. 4-players) parity
game is NP (resp. coNP)-hard.

For XPtSafety,Reachability,Büchi, coBüchiu, if the number of players in the given NCRSP
is a fixed constant k, then the two-player game construction to test tree automata emptiness
in Section 4 yields a polynomial size two-player zero-sum game G1, where the formula
characterizing the winning condition has constant size. The latter can be converted into an
equivalent deterministic Büchi tree automaton of polynomial size, whose product with G1
gives a Büchi game, solvable in PTime. Finally, if X P tParity,Streett,Rabin,Mulleru, the
corresponding k-fixed NCRSP can be reduced to a polynomial-size two-player game, with a 0-
sum Muller acceptance condition defined by a boolean formula of polynomial size. Hence, the
PSpace upper bound listed in Table 1 applies to k-fixed NCRSP with the above objectives.
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