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Abstract
Parikh automata extend automata with counters whose values can only be tested at the end of
the computation, with respect to membership into a semi-linear set. Parikh automata have found
several applications, for instance in transducer theory, as they enjoy a decidable emptiness problem.

In this paper, we study two-way Parikh automata. We show that emptiness becomes undecidable
in the non-deterministic case. However, it is PSpace-C when the number of visits to any input
position is bounded and the semi-linear set is given as an existential Presburger formula. We also
give tight complexity bounds for the inclusion, equivalence and universality problems. Finally, we
characterise precisely the complexity of those problems when the semi-linear constraint is given by
an arbitrary Presburger formula.
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1 Introduction

Parikh automata, introduced in [18], extend finite automata with counters in Z which can
be incremented and decremented, but the counters can only be tested at the end of the
computation, for membership in a semi-linear set (represented for instance as an existential
Presburger formula). More precisely, transitions are of the form (q, σ,~v, q′) where q, q′ are
states, σ is an input symbol and ~v ∈ Zd is a vector of dimension d. A word w is accepted if
there exists a run ρ on w reaching an accepting state and whose final vector (the component-
wise sum of all vectors along ρ) belongs to a given semi-linear set. Parikh automata strictly
extend the expressive power of finite automata. For example, the context-free language
of words of the form anbn is definable by a deterministic Parikh automaton which checks
membership in a∗b∗, counts the number of occurrences of a and b, and at the end tests for
equality of the counters, i.e. membership in the linear set {(n, n) | n ∈ N}. They still enjoy
decidable, NP-C, non-emptiness problem [9].

Parikh automata (PA) have found applications for instance in transducer theory, in
particular to the equivalence problem of functional transducers on words, and to check
structural properties of transducers [10], as well as in answering queries in graph databases [9].
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40:2 Two-Way Parikh Automata

Extensions of Parikh automata with a pushdown stack have been considered in [17] with
positive decidability results with respect to emptiness. Two-way Parikh automata with a
visibly pushdown stack have been considered in [6] with applications to tree transducers.

In this paper, our objective is to study two-way Parikh automata (2PA), the extension
of PA with a two-way input head, where the semi-linear set is given by an existential
Presburger formula. For 2PA as well as subclasses such as deterministic 2PA (2DPA), we aim
at characterizing the precise complexity of their decision problems (membership, emptiness,
inclusion, equivalence), and analysing their expressiveness and closure properties.

Contributions. Since semi-linear sets are closed under all Boolean operations, it is easily
seen that deterministic Parikh automata (DPA) are closed under all Boolean operations.
More interestingly, it is also known that, while they strictly extend the expressive power of
DPA, unambiguous PA (UPA) are (non-trivially) closed under complement (as well as union
and intersection) [2]. We give here a simple explanation to these good closure properties:
UPA effectively correspond to 2DPA. Closure of 2DPA under Boolean operations indeed holds
straightforwardly due to determinism. The conversion of UPA to 2DPA is however non-trivial,
but is obtained by the very same result on word transducers: it is known that unambiguous
finite transducers are equivalent to two-way deterministic finite transducers [21], based on a
construction by Aho, Hopcroft and Ullman [1], recently improved by one exponential in [7].
Parikh automata can be seen as transducers producing sequences of vectors (the vectors
occurring on their transitions), hence yielding the result. The conversion of 2DPA to UPA
is a standard construction based on crossing sections, which however needs to be carefully
analysed for complexity purposes.

The effective equivalence between 2DPA and UPA indeed entails decidability of the non-
emptiness problem for 2DPA. However, given that non-emptiness of PA is known to be
NP-C [9], and the conversion of 2DPA to UPA is exponential, this leads to NExpTime
complexity. By a careful analysis of this conversion and small witnesses properties of
Presburger formulas, we show that emptiness of 2DPA, and even bounded-visit 2PA, is
actually PSpace-C. Bounded-visit 2PA are non-deterministic 2PA such that for some natural
number k, each position of an input word w is visited at most k times by any accepting
computation on w. In particular, 2DPA are always n-visit for n the number of states. If the
number k of visits is a fixed constant, non-emptiness is then NP-C, which is consistent with
the complexity result of [9] for (one-way) PA (by taking k = 1). We show that dropping the
bounded-visit restriction however leads to undecidability.

Thanks to the closure properties of 2DPA, we show that the inclusion, universality and
equivalence problems are all coNExpTime-C. Those problems are known to be undecidable
for PA [18]. The membership problem of 2PA turns out to be NP-C, just as for (one-way)
PA. The coNExpTime lower bound holds for one-way deterministic Parikh automata, a
result which is also new, to the best of our knowledge.

Finally, we study the extension of two-way Parikh automata with a semi-linear set defined
by a Σi-Presburger formula, i.e. a formula with a fixed number i of unbounded blocks of
quantifiers where the consecutive blocks alternate i−1 times between existential and universal
blocks, and the first block is existential. We characterise tightly the complexity of the
non-emptiness problem for bounded-visit Σi-2PA, as well as the universality, inclusion and
equivalence problems for Σi-2DPA, in the weak exponential hierarchy [13]. For i > 1, we find
that the complexity of these problems is dominated by the complexity of checking satisfiability
or validity of Σi-Presburger formulas. This is unlike the case i = 1: the non-emptiness
problem for bounded-visit 2PA is PSpace-C while satisfiability of Σ1-formulas is NP-C.
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Related work. Parikh automata are known to be equivalent to reversal-bounded mul-
ticounter machines (RBCM) [16] in the sense that they describe the same class of languages [2].
Two-way RBCM (2RBCM), even deterministic, are known to have undecidable emptiness
problem [16]. Using diophantine equations as in [16], we show that emptiness of 2PA is
undecidable. However our decidability result for 2DPA contrasts with the undecidabilty of
deterministic 2RBCM emptiness. The difference is that 2RBCM can test their counters at
any moment during a computation, and not only at the end. Based on the fact that the
number of reversals is bounded, deferring the tests at the end of the computation is always
possible [16] but non-determinism is needed. Unlike 2DPA, deterministic 2RBCM are not
necessarily bounded-visit. A 2DPA can be seen as a deterministic 2RBCM whose tests on
counters are only done at the end of a computation.

Two-way Parikh automata on nested words have been studied in [6] where it is shown
that under the single-use restriction (a generalisation of the bounded-visit restriction to
nested words), they have NExpTime-C non-emptiness problem. Bounded-visit 2PA are a
particular case of those Parikh automata operating on (non-nested) words. Applying the
result of [6] to 2PA would yield a non-optimal NExpTime complexity for the non-emptiness
problem, as it first goes through an explicit but exponential transformation into a one-way
machine with known NP-C non-emptiness problem. Here instead, we rely on a small witness
property, whose proof uses a transformation into one-way Parikh automaton, and then we
apply a PSpace algorithm performing on-the-fly the one-way transformation up to some
bounded length.

Finally, the emptiness problem for the intersection of n PA was shown to be PSpace-C
in [9]. Our PSpace-C result on 2PA emptiness generalises this result, as the intersection of
n PA can be simulated trivially by a (sweeping) n-bounded 2PA. The main lines of our proof
are similar to those in [9], but in addition, it needs a one-way transformation on top of the
proof in [9], and a careful analysis of its complexity.

2 Two-way Parikh automata

Two-way Parikh automata are two-way automata extended with weight vectors and a semi-
linear acceptance condition. In this section, we first define two-way automata, semi-linear
sets and then two-way Parikh automata.

Two-way Automata. A two-way finite automaton (2FA for short) A over an alphabet Σ
is a tuple (Q,QL, QR, QI , QH , QF ,∆) whose components are defined as follows. We let `
and a be two delimiters not in Σ, intended to represent the beginning and the end of the
word respectively. The set Q is a non-empty finite set of states partitioned into the set of
right-reading states QR and the set of left-reading states QL. Then, QI ⊆ QR is the set of
initial states, QH ⊆ Q is the set of halting states, and QF ⊆ QH is the set of accepting states.
The states belonging to QH \QF are said to be rejecting. Finally, ∆ ⊆ Q× (Σ∪ {`,a})×Q
is the set of transitions. Intuitively, the reading head of A is always placed in between input
positions, a transition from q ∈ QR (resp. q ∈ QL) reads the input letter on the right (resp.
left) of the head and moves the head one step to the right (resp. left). Also, we have the
following restrictions on the behaviour of the head to keep it in between the boundaries `
and a and to ensure the following properties on the initial and the halting states:
1. no outgoing transition from a halting state:

(QH × (Σ ∪ {`,a})×Q) ∩∆ = ∅

FSTTCS 2019
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2. the head cannot move left (resp. right) when it is to the left of ` (resp. right of a):
(QL × {`} ×QL) ∩∆ = ∅ (resp. (QR × {a} × (QR \QF )) ∩∆ = ∅)

3. all transitions leading to a halting state qH read the delimiter a:
((q, a, qH) ∈ ∆ ∧ qH ∈ QH) =⇒ (q ∈ QR ∧ a = a)

A configuration (uL, p, uR) of A on a word u ∈ Σ∗ consists of a state p and two words
uL, uR ∈ (Σ ∪ {`,a})∗ such that uLuR = `ua. A run ρ on a word u ∈ Σ∗ is a sequence
ρ = (uL

0, q0, u
R
0 )a1(uL

1, q1, u
R
1 ) . . . an(uL

n, qn, u
R
n) alternating between configurations on u and

letters in Σ ∪ {`,a} such that for all 1 ≤ i ≤ n, we have (qi−1, ai, qi) ∈ ∆, and for all
s ∈ {L,R}, if qi−1 ∈ Qs then |usi | = |usi−1| − 1. The length of the run ρ, denoted |ρ| is the
number of letters appearing in ρ. Here |ρ| = n. The run ρ is halting if qn ∈ QH (and hence
uR
n = ε by condition 3), initial if uL

0 = ε and q0 ∈ QI , accepting if it is both initial and
halting, and qn ∈ QF ; otherwise the run is rejecting. A word u is accepted by A if there
exists an accepting run of A on u, and the language L(A) of A is defined as the set of words
it accepts.

An automaton A is said to be one-way (FA) if QL is empty. A run ρ is said to
be k-visit if every input position is visited at most k times in the run ρ, i.e. for ρ =
(uL

0, q0, u
R
0 ) . . . (uL

n, qn, u
R
n), we have max{|P | | P ⊆ {0, . . . , n} ∧ ∀i, j ∈ P, uL

i = uL
j} ≤ k. The

automaton A is said to be k-visit if all its accepting runs are k-visit, fixed-visit if it is k-visit
for some fixed k and bounded-visit if it is k-visit for some unfixed k. Also, A is said to be
deterministic if for all p ∈ Q and all a ∈ Σ ∪ {`,a} there exists at most one q ∈ Q such that
(p, a, q) ∈ ∆. Finally, it is unambiguous (denoted by the class 2UFA or UFA depending on
whether it is two-way or one-way) if for every input word there exists at most one accepting
run. The following proposition is trivial but useful:

I Proposition 2.1. Any bounded-visit 2FA with n states is k-visit for some k ≤ n.

Semi-linear Sets. Let d ∈ N 6=0. A set L ⊆ Zd of dimension d is linear if there exist
~v0, . . . , ~vk ∈ Zd such that L = {~v0 +

∑k
i=1 xi~vi | x1, . . . , xn ∈ N}. The vectors (~vi)1≤i≤k are

the periods and ~v0 is called the base, forming what we call a period-base representation of L,
whose size is d · (k+ 1) · log2(µ+ 1) where µ is the maximal absolute integer appearing on the
vectors. A set is semi-linear if it is a finite union of linear sets. A period-base representation
of a semi-linear set is given by a period-base representation for each of the linear sets it is
composed of, and its size is the sum of the sizes of all those representations.

Alternatively, a semi-linear set of dimension d can be represented as the set of models of
a Presburger formula with d free variables. A Presburger formula is a first-order formula
built over terms t on the signature {0, 1,+,×2} ∪X, where X is a countable set of variables
and ×2 denotes the doubling (unary) function1. In particular, Presburger formulas obey the
following syntax:

Φ def= t ≤ t | ∃x Φ | Φ ∧ Φ | Φ ∨ Φ | ¬Φ

The class of formulas of the form ∃~x1,∀~x2 . . . ,Ωi~xi [ϕ] where ϕ is quantifier free and Ω ∈ {∀,∃}
is denoted by Σi. In particular, Σ1 is the set of existential Presburger formulas. The size
|Ψ| of a formula is its number of symbols. We denote by ~v |= ϕ the fact that a vector ~v
of dimension d satisfies a formula ϕ with d free variables, and say that ϕ is satisfiable if
there exists such a ~v. The formula ϕ is said to be valid if it is satisfied by any ~v. It is
well-known [12] that a set S ⊆ Zd is semi-linear iff there exists an existential Presburger
formula ψ with d free variables such that S = {~v | ~v |= ψ}.

1 The function ×2 is syntactic sugar allowing us to have simpler binary encoding of values.
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Let Σ = {a1, . . . , an} be an alphabet (assumed to be ordered), and u ∈ Σ∗, the Parikh
image of u is defined as the vector P(u) = (|u|a1 , . . . , |u|an

) where |u|a denotes the number
of times a occurs in u. The Parikh image of language L ⊆ Σ∗ is P(L) = {P(u)|u ∈ L}.
Parikh’s theorem states that the Parikh image of any context-free language is semi-linear.

Two-way Parikh automata. A two-way Parikh automaton (2PA) of dimension d ∈ N over Σ
is a tuple P = (A, λ, ψ) where A = (Q,QL, QR, QI , QH , QF ,∆) is a 2FA over Σ, λ : ∆→ Zd

maps transitions to vectors, and ψ is an existential Presburger formula with d free variables,
and is called the acceptance constraint. The value V (ρ) of a run ρ of A is the sum of the
vectors occurring on its transitions, with V (ρ) = 0Zd if |ρ| = 0. A word is accepted by P if it
is accepted by some accepting run ρ of A and V (ρ) |= ψ. The language L(P ) of P is the set
of words it accepts. The automaton P is said to be one-way, two-way, k-visit, unambiguous
and deterministic if its underlying automaton A is so. We define the representation size2
of P as |P | = |Q|+ |ψ|+ |range(λ)|

(
d log2(µ+ 1) + |Q|2

)
where range(λ) = {λ(t) | t ∈ ∆}

and µ is the maximal absolute entries appearing in weight vectors of P . Finally two 2PA are
equivalent if they accept the same language.

Examples. Let Σ = {a, b, c,#} and for all n ∈ N, let Ln = {ak#u | u ∈ {b, c}∗ ∧ k = |{i |
1 ≤ i ≤ |u| − n ∧ u[i] 6= u[i + n]}|}, i.e. k is the number of positions i in u such that the
ith letter u[i] mismatches with u[i + n]. For all n, Ln is accepted by the 2DPA of Fig. 1
which has O(n) states, tagged with R or L to indicate whether they are right- or left-reading
respectively. On a word w, the automaton starts by reading ak and increments its counter
to store the value k (state qa). Then, for the first |u| − n positions i of u, the automaton
checks whether u[i] 6= u[i+ n] in which case the counter is decremented. To do so, it stores
σ = u[i] in its state, moves n+ 1 times to the right (states q0, q

σ
1 , . . . , q

σ
n), checks whether

u[i+ n] 6= u[i] (transitions qσn to p1) and decrements the counter accordingly. Then, it moves
n times to the left (states p1 to pn). Whenever it reads a from states qσj , pj or q0, it moves
to state qF and accepts if the counter is zero.

qI
R

qa

R

q0
R

qb1 R
qbnR

qc1
R

qcn
R

p1
L

pn
L

qF
RS = {0}

a | 0

a | 0

` | 0
a | 1

# | 0

b | 0

b, c | 0 b, c | 0

b 0
c −1

c | 0
b, c | 0 b, c | 0

b −1
c 0

b, c | 0b, c | 0b, c | 0

Figure 1 A 2DPA recognising Ln = {ak#u | u ∈ {b, c}∗ ∧ k = |{i | 1 ≤ i ≤ |u| − n ∧ u[i] 6=
u[i + n]}|}.

Our second example shows how to encode multiplication. The language {an#am#an×m |
n,m ∈ N} is indeed definable by the 2PA of Figure 2 which has dimension 2. When reading a
word of the form an#am#a`, every accepting run makes k passes over an where k is chosen
non-deterministically by the choice made on state q1 on reading #. Along those k passes,
the automaton increments the first dimension whenever a is read in a right-to-left pass. It

2 Note that weight vectors are not memorized on transitions but into a table and transitions only carry a
key of this table to refer the corresponding weight vectors.

FSTTCS 2019
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also counts the number of passes in the second dimension. Thus, when entering state q2, the
sum of the vectors so far is (nk, k). Then, on am, it decrements the second dimension and
on a`, it decrements the first dimension, and eventually checks that both the counters are
equal to zero, which implies that k = m and ` = nk = nm. Note that this automaton is not
bounded-visit as its number of visits to any position of an is arbitrary.

q0
R

q1
R

q2
R

q3
R

q4
R

q5
L

S = {(0, 0)}

` | (0, 0)

a | (0, 0)

# | (0, 0)

a | (0,−1)

# | (0, 0)

a | (−1, 0)

a | (0, 0)

# | (0, 1)

a (1, 0)
# (0, 0)

` | (0, 0)

Figure 2 A 2PA recognising {an#am#an×m | n, m ∈ N}.

3 Relating two-way and one-way Parikh automata

In this section, we provide an algorithm which converts a bounded-visit 2PA into a PA defining
the same language, through a crossing section construction. This technique is folkloric in
the literature (see Section 2.6 of [15]) and has been introduced to convert a 2FA into an
equivalent FA. Intuitively, the one-way automaton is constructed such that on each position
i of the input word, it guesses a tuple of transitions (called crossing section), triggered by the
original two-way automaton at the same position i and additionally checks a local validity
between consecutive tuples (called matching property). A one-way automaton takes crossing
sections as set of states. Furthermore, the matching property is defined to ensure that the
sequence of crossing sections which successively satisfy it, correspond to the sequence of
crossing sections of an accepting two-way run. Thanks to the commutativity of +, the order
in which weights are combined by the two-way automaton does not matter and therefore,
transitions of the one-way automaton are labelled by summing the weights of transitions of
the crossing section. Formally, we define a crossing section as follows:

I Definition 3.1 (crossing section). Let k ∈ N 6=0. Consider a k-visit 2PA P = (A, λ, ψ) over
Σ and a ∈ Σ ∪ {`,a}. An a-crossing section is a sequence c = (p1, a, q1) . . . (p`, a, q`) ∈ ∆+

such that 1 ≤ ` ≤ k, p1, q` ∈ QR and for all m ∈ {L,R}, pi ∈ Qm =⇒ pi+1 /∈ Qm. We define
the value of c as V (c) =

∑`
i=1 λ(pi, a, qi), and its length |c| = `. The L-anchorage of c is

defined by p1f(q2, p3) . . . f(q`−1, p`) where f(qi, pi+1) = ε if qi = pi+1 and qi ∈ QR, otherwise
f(qi, pi+1) = qipi+1. The R-anchorage of c is defined by f(q1p2) . . . f(q`−2p`−1)q` where
f(qi, pi+1) = ε if qi = pi+1 and qi ∈ QL, otherwise f(qi, pi+1) is the identity. Furthermore,
c is said to be initial if its L-anchorage is p1 ∈ QI . Dually, c is said to be accepting if its
R-anchorage is q` ∈ QF .

Given a run ρ of a 2PA over u and a position 1 ≤ i ≤ |u|, the crossing section of ρ at
position i is defined as the sequence of all transitions triggered by ρ when reading the ith
letter, taken in the order of appearance in ρ. We also define the crossing section sequence
C(ρ) as the sequence of crossing sections of ρ from position 1 to |u|. Note that the first
crossing section is initial and the last crossing section of ρ is accepting if ρ is accepting.

I Example 3.2. Figure 3, shows a run over the word `aba. Consider the a-crossing section
c = (p1, a, q1)(p2, a, q2)(p2, a, q3)(p4, a, q4)(p5, a, q5) with q1 = p2, q2 = p3 and q4 = p5. In
particular the run makes on immediate reversal at those states, and exits the a-crossing
section from q3 to q5. The L-anchorage of c is p1f(q2, p3)f(q4, p5) = p1, the R-anchorage of c
is f(q1, p2)f(q3, p4)q5 = q3p4q5 and V (c) = ~v2 +~v3 +~v4 +~v11 +~v12. Note that the states of the
crossing section do not appear in the anchorage when the run changes its reading direction.
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p1

q3

p4

q5

` a b a

~v1 ~v2

~v3

~v4 ~v5 ~v6

~v8 ~v7

~v9

~v11 ~v10

~v12 ~v13 ~v14

q1
=
p2q2

=
p3

q4
=
p5

Figure 3 A a-crossing section of a run.

I Definition 3.3 (matching relation). Consider two crossing sections c1, c2 from the same
automaton. The matching relation M is defined such that (c1, c2) ∈M if the R-anchorage of
c1 equals the L-anchorage of c2.

In general, an arbitrary sequence of crossing sections may not correspond to a run of a
two-way automaton, that is a crossing section sequence s = c1, . . . , c` such that C(ρ) 6= s for
all run ρ. Lemma 3.4 shows that the matching property ensures the existence of such a run
ρ in the two-way automaton.

I Lemma 3.4. Consider s = c1, . . . , cn where ci is an ai-crossing section such that c1 is
initial, cn is accepting, and (ci, ci+1) ∈ M for all i ∈ {1, . . . , n − 1}. Then there exists an
accepting two-way run ρ over a1 . . . an such that C(ρ) = s. Moreover, V (ρ) =

∑n
i=1 V (ci).

I Theorem 3.5. Let k ∈ N6=0. Given a k-visit 2PA P , one can effectively construct an
equivalent PA R that is at most exponentially bigger. Furthermore, if P is deterministic then
R is unambiguous.

Proof. Let P = (A, λ, ψ) with A = (Q,QL, QR, QI , QH , QF ,∆) be a k-visit 2PA of dimension
d with n = |Q| states. In this proof we show how to construct R = (B,ω, ψ) where
B = (V, V L, V R, VI , VH , VF ,Γ) is a PA of dimension d having O(n2k) states such that
|range(ω)| ≤ |range(λ)|k+1. Note that the formula ψ is the same in both P and R.

To do so, we first consider a symbol > and extend the relation M such that (c,>) ∈M
holds for all accepting crossing section c. Then, we define R as follows:

V is the set of crossing sections of length at most k
VI is the set of initial crossing sections and VH = VF = {>}
Γ = {(c1, a, c2) ∈ V × (Σ ∪ {`,a})× V | (c1, c2) ∈M ∧ c1 is an a-crossing section}
ω : (c1, a, c2) 7→ V (c1)

Similar to the case of 2FA, a word u is accepted by B if there exists an accepting run of B
on u, and the language L(B) of B is defined as the set of words it accepts. The inclusion
L(R) ⊆ L(P ) is a direct consequence of Lemma 3.4, while the other direction is based on the
following observation: any accepting two-way run ρ has a sequence of crossing sections C(ρ),
consecutively satisfying the matching relation. Note that, the choice of c2 in a transition
(c1, a, c2) is non-deterministic in general; but when P is deterministic at most one such choice
of c2 will correspond to a two-way run ensuring unambiguity. J
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40:8 Two-Way Parikh Automata

The previous crossing section construction permits to construct a one-way automaton
from a bounded-visit two-way automaton. This construction is exponential in the number
of states and in the number of distinct weight vectors. Nevertheless, a close inspection of
the proof of Theorem 3.5, reveals that the exponential explosion in the number of distinct
weight vectors can be avoided, while preserving the non-emptiness (but not the language).

I Lemma 3.6. Let P be a k-visit 2PA. We can effectively construct a PA R with O(n2k)
states and such that L(R) = ∅ iff L(P ) = ∅. Furthermore, R has the same set of weight
vectors and the same acceptance constraint as P .

Proof. The construction is the same as in Theorem 3.5 but each transition of the one-way
automaton t = (c1, a, c2) is split into the following |c1| consecutive transitions, using a fresh
symbol # /∈ Σ: c1

a−→ (t, 1) #−→ (t, 2) #−→ . . . (t, |c1| − 2) #−→ (t, |c1| − 1) #−→ c2. The vectors of
those transitions are defined as follows. If c1[i] denotes the ith transition of c1, then the
vector of the first R-transition is the vector of the P -transition c1[1], and the vector of any
R-transition from state (t, i) is the vector of the P -transition c1[i+ 1]. The two languages
are then equal modulo erasing # symbols. J

I Theorem 3.7. Unambiguous Parikh automata have the same expressiveness as two-way
deterministic (even reversible3) Parikh automata i.e. UPA = 2DPA. Furthermore, the
transformation from one formalism to the other can be done in ExpTime.

Proof. We only show here UPA ⊆ 2DPA. The opposite direction is given by Theorem 3.5.
Let P = (A, λ, ψ) be a UPA of dimension d over Σ. Consider the alphabet Λ ⊆ Zd as the set
of vectors occurring on the transitions of P . We can see the automaton A with the morphism
λ as an unambiguous finite transducer T defining a function from Σ∗ to Λ∗. It is known that
any unambiguous letter-to-letter one-way transducer can be transformed into an equivalent
letter-to-letter deterministic two-way transducer. This result is explicitly stated in Theorem 1
of [21] which is based on a general technique introduced by Aho, Hopcroft and Ullman [1]4.
Recently, another approach has been introduced which reduces the complexity of the previous
technique by one exponential [7], and allows to show that any unambiguous finite transducer
is equivalent to a reversible two-way transducer exponentially bigger, yielding our result. J

4 Emptiness Problem

The emptiness problem asks, given a 2PA, whether the language it accepts is empty. We
have seen in Example 2 how to encode the multiplication of two natural numbers encoded
in unary. We can generalise this to the encoding of solutions of Diophantine equations as
languages of 2PA, yielding undecidability:

I Theorem 4.1. The emptiness problem for 2PA is undecidable.

The proof of this theorem relies on the fact that an input position can be visited an
arbitrary number of times, due to non-determinism. If instead we forbid this, we recover
decidability. To prove it, we proceed in two steps: first, we rely on the result of the previous

3 An automaton is said to be reversible if it is both deterministic and co-deterministic.
4 Based on the technique of Aho and Hopcroft and Ullman a similar result was shown in [4] for weighted

automata, namely that an unambiguous weighted automata over a semiring can be converted into an
equivalent deterministic two-way weighted automata.
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section showing that any bounded-visit 2PA can be effectively transformed into some (one-
way) PA. This yields decidability of the emptiness problem as this problem is known to
be decidable for PA. To get a tight complexity in PSpace, we analyse this transformation
(which is exponential), to get exponential bounds on the size of shortest non-emptiness
witnesses. A key lemma is the following, whose proof gathers ideas and arguments that
already appeared in [20, 9].

I Lemma 4.2. Let P be a one-way Parikh automaton with n states and γ distinct weight
vectors. Then, we can construct an existential Presburger formula ϕ(x) =

∨m
i=1 ϕi(x) such

that for all ` ∈ N, ϕ(`) holds iff there exists w ∈ L(P ) ∩ Σ`. Furthermore, log2(m) and each
ϕi are poly(|P |, logn), in addition ϕ can be constructed in time 2O(γ2 log(γn)).

I Remark 4.3. Note that, ϕ(x) is not in prenex normal form (PNF) but ϕi are. Since ϕ is a
disjunction of PNF subformulas, it can be in PNF in polynomial time.

Thanks to the lemma above, we are able to show that the non-emptiness problem for
bounded-visit 2PA is PSpace-C, just as the non-emptiness problem for two-way automata.
In some sense, adding semi-linear constraints to two-way automata is for free as long as it is
bounded-visit.

I Theorem 4.4. The non-emptiness problem for bounded-visit 2PA is PSpace-C. It is NP-C
for k-visit 2PA when k is fixed.

Proof. Consider a k-visit 2PA P = (A, λ, ψ) of dimension d. We start with the PSpace
membership. Intuitively, we first want to apply Lemma 3.6 in order to deal with a one-way
automaton, and apply then Lemma 4.2 to reduce the non-emptiness problem of the one-way
Parikh automaton to the satisfiability of an existential Presburger formula. Nevertheless, we
cannot explicitly transform P into a one-way automaton while keeping polynomial space. So,
in the sequel, (i) we highlight an upper bound on the smallest witness of non-emptiness and
based on it, (ii) we provide an NPSpace algorithm which decides if there exists such a witness.

(i) By Lemma 4.2 applied on the PA obtained from Lemma 3.6, there exists an existential
Presburger formula ϕ(`) =

∨m
i=1 ϕi(`) where each |ϕi| is polynomial in |P |. This formula is

satisfiable iff there exists w ∈ Σ` such that w ∈ L(P ). By Theorem 6 (A) of [22], there exists
N exponential in |ϕi| such that ϕi is satisfiable iff ϕi(`) holds for some 0 ≤ ` ≤ N . Hence,
there exists N exponential in |P | such that min{|u| | u ∈ L(P )} ≤ N .

(ii) The algorithm guesses a witness u of length at most N on-the-fly and a run on it. It
controls its length by using a binary counter: as N is exponential in |P |, the memory needed
for that counter is polynomial in |P |. The transitions of the one-way automaton obtained from
Lemma 3.6 can also be computed on-demand in polynomial space. Eventually, it suffices to
check that the last state is accepting and the sum ~v = (v1, . . . , vd) of the vectors computed on-
the-fly along the run satisfies the Presburger formula ψ(x1, . . . , xd). To do so, our algorithm
constructs a closed formula ψ~v in polynomial time such that ψ~v is true iff ~v |= ψ. It is possible
by hardcoding the values of ~v in ψ by substituting each xi by a term tvi of size (log2(vi))2

encoding vi, by using the function symbol ×2 e.g. t13 = ×2(×2(×2(1))) +×2(×2(1)) + 1. Let
us argue that ψ~v has polynomial size. Let µ be the maximal absolute entry of vectors of P ,
then vi ≤ µN , and since N is exponential in |P |, tvi

has polynomial size in |P | and log2(µ).
Hence ψ~v has polynomial size, and its satisfiability can be checked in NP [22].

The lower bound is direct as it already holds for the emptiness problem of deterministic
two-way automata, by a trivial encoding of the PSpace-C intersection problem of n DFA [19].

When k is fixed, then the conversion to a one-way automaton (Lemma 3.6) is polynomial.
Then, the result follows from the NP-C result for the non-emptiness of PA [9]. J
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I Remark 4.5. In [9], non-emptiness is shown to be polynomial time for PA when the
dimension is fixed, the values in the vectors are unary encoded and the semi-linear constraint
is period-base represented. As a consequence, for all fixed d, k, the non-emptiness problem
for k-visit 2PA with vectors in {0, 1}d and a period-base represented semi-linear constraint
can be solved in PTime.

5 Closure properties, universality, inclusion and equivalence problems

Since the class of 2DPA is equivalent to the class of UPA that is known to be closed under
Boolean operations [3, 18], we get the closure properties of 2DPA for free, although with
non-optimal complexity. We show here that they can be realised in linear-time for intersection
and union. For the complement however, while the size of the state-space stays linear, the
size of the acceptance condition explodes due to the transformation of negated existential
Presburger formulas into existential formulas.

I Theorem 5.1 (Boolean closure). Let P, P1, P2 be 2DPA such that P = (A, λ, ψ). One can
construct a 2DPA P = (A′, λ′, ψ′) such that L(P ) = L(P ) and the size of A′ is linear in the size
of A. One can construct in linear-time a 2DPA P∪ (resp. P∩) such that L(P∪) = L(P1)∪L(P2)
(resp. L(P∩) = L(P1) ∩ L(P2)).

Proof. Let us start by intersection, assuming Pi = (Ai, λi, ψi) has dimension di. The
automaton P∩ is constructed with dimension d1 + d2. Then P∩ first simulates P1 on
the first d1 dimensions (with weight vectors belonging to Zd1 × {0}d2), and then, if P1
eventually reaches a halting state, it stops if it is non-accepting and rejects, otherwise it
simulates P2 on the last d2 dimensions with vectors in {0}d1 × Zd2 , and accepts the word
if the word is accepted by P2 as well. The Presburger acceptance condition is defined as
ψ(~x1, ~x2) = ψ1(~x1) ∧ ψ2(~x2). Note that if P1 never reaches a halting state, then P∩ won’t
either, so the word is rejected by both automata. It is also a reason why this construction
cannot be used to show closure under union: even if P1 never reaches a halting state, it
could well be the case that P2 accepts the word, but the simulation of P2 in that case
will never be done. However, assuming that P1 halts on any input, closure under union
works with a similar construction. Additionally, we need to keep in some new counter c the
information whether P1 has reached an accepting state: First P∪ simulates P1, if P1 halts in
some accepting state, then c is incremented and P∪ proceeds with the simulation of P2. The
formula is then ψ(~x1, ~x2, c) = (c = 1 ∧ ψ1(~x1)) ∨ ψ2(~x2).

So, we have closure under union in linear-time as long as P1 halts on every input.
This can be used to show closure under complement, using the following observation:
L(P ) = L(A) ∪ L(A, λ,¬ψ) and moreover, it is known that 2DFA can be complemented
in linear-time into a 2DFA which always halts [11]. The formula ¬ψ is universal since ψ
is existential. Then, ¬ψ could be converted into an equivalent existential formula using
quantifier elimination [5] of doubly exponential size.

For the closure under union, we use the equality L(P1) ∪ L(P2) = L(P1) ∩ L(P2). It can
be done in linear-time because the formulas for P1 and P2 are universal, and so is the formula
for the 2DPA accepting L(P1) ∩ L(P2). By applying again the complement construction, we
get an existential formula (without using quantifier eliminations). J

Thanks to Theorem 5.1 and decidability of non-emptiness for 2DPA, we easily get
the decidability of the universality problem (deciding whether L(P ) = Σ∗), the inclusion
problem (deciding whether L(P1) ⊆ L(P2)), and the equivalence problem (deciding whether
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L(P1) = L(P2)) for 2DPA. The following theorem establishes tight complexity bounds. It is
a consequence of a more general result (Theorem 6.4) that we establish for Parikh automata
with arbitrary Presburger formulas in Section 6.

I Theorem 5.2. The universality, inclusion and equivalence problems are coNExpTime-C
for 2DPA.

Finally, we study the membership problem which asks given a Parikh automaton P and
a word w ∈ Σ∗, whether w ∈ L(P ). Hardness was known already for PA [9].

I Theorem 5.3. The membership problem for 2PA is NP-C.

6 Parikh automata with arbitrary Presburger acceptance condition

In this section, we consider Parikh automata where the acceptance constraint is given as
an arbitrary Presburger formula, that is, not restricted to existential Presburger formula,
and we study the complexity of their decision problems. For all i > 0, a two-way Σi-Parikh
automaton (Σi-2PA for short) is a tuple P = (A, λ,Ψ) where A, λ are defined just as for 2PA
and Ψ ∈ Σi. In particular, a Σ1-2PA is exactly a 2PA. Similarly, we also define Σi-DPA,
Σi-2DPA, Σi-PA as expected, and their Πi counterpart (when the formula is in Πi).

The complexity of Presburger arithmetic has been connected to the weak ExpTime
hierarchy [14, 13] which resides between NExpTime and ExpSpace. It is defined as⋃
i≥0 ΣExp

i where:

ΣP
0

def= ΠP
0

def= PTime ΣP
i+1

def= NPΣP
i ΠP

i+1
def= coNPΣP

i

ΣExp
0

def= ΠExp
0

def= ExpTime ΣExp
i+1

def= NExpTimeΣP
i ΠExp

i+1
def= coNExpTimeΣP

i

Since Lemma 4.2 uses the acceptance constraint as a black box, we can generalise it as
follows.

I Lemma 6.1. For any fixed i ∈ N 6=0, given a Σi-PA P with n states and γ distinct
weight vectors, we can construct a Σi-formula Φ such that for all ` ∈ N we have that
Φ(`) =

∨m
j=1 Φj(`) holds iff there exists w ∈ L(P ) ∩ Σ|`|. Furthermore, log2(m) and the size

of each Φj are poly(|P |, log(n)), in addition Φ can be constructed in time 2O(γ2 log(γn)).

Using Lemma 6.1, we can extend Theorem 4.4 to bounded-visit Σi+1-2PA. Note that the
case of Σ1-2PA is not covered by the following statement.

I Theorem 6.2. For any fixed i ∈ N 6=0, the non-emptiness problem for bounded-visit Σi+1-
2PA is ΣExp

i -C.

Proof. For the upper-bound, we show that this problem can be solved by an alternating
Turing machine in exponential time, which alternates at most i times between sequences of
non-deterministic and universal transitions, starting with non-deterministic transitions (called
i-alternating machine in the sequel). As shown in [13], the satisfiability of Σi+1-formulas
is complete for ΣExp

i -C. Hence there is an i-alternating machineM running in exponential
time which checks the satisfiability of such formulas. Now, similar to the case of Σ1 in
Theorem 4.4, from a bounded-visit Σi+1-2PA P one can construct a Σi+1-formula which is
true iff the automaton has a non-empty language. We can do so by applying Lemma 6.1
on the PA obtained5 from Lemma 3.6. Hence, non-emptiness of a bounded-visit Σi+1-2PA

5 Lemma 3.6 can be trivially adapted to Σi-formulas as acceptance condition.
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reduces to satisfiability of a Σi+1-formula Φ(`) =
∨m
j=1 Φj(`) such that log2(m) and the size

of each Φj are polynomial in |P | and can be constructed in time 2O(γ2 log(γn)). However we
cannot construct explicitly Φ, since its size is exponential in |P |. Instead we construct an
i-alternating machineM′ that first guesses a disjunct Φs and constructs it in exponential
time, and then simulates the machineM on Φs. Recall theM starts with non-deterministic
transitions. Thus the machine M′ runs in exponential time, and also performs only i

alternations, which provides ΣExp
i upper bound.

Hardness comes from checking if a Σi+1-sentence holds true, which is ΣExp
i -C as shown

in [13]. From a Σi+1-sentence Ψ it suffices to construct a Parikh automaton P = (A, λ,Ψ) of
dimension 0 such that L(A) 6= ∅, therefore L(P ) 6= ∅ iff L(P ) = L(A) iff Ψ holds. J

I Theorem 6.3 (Boolean closure). Let P, P1, P2 be Σi-2DPA. One can construct in linear
time a Πi-2DPA P and two Σi-2DPA P∪, P∩ such that L(P ) = L(P ), L(P∪) = L(P1)∪L(P2)
and L(P∩) = L(P1) ∩ L(P2).

Proof. The constructions are the same as in the proof of the case i = 1 of Theorem 5.1, using
closure under disjunction and conjunction of Σi and the fact that negating a Σi-formula
yields a Πi-formula. J

I Theorem 6.4. For all fixed i ∈ N 6=0, the universality, inclusion and equivalence problems
for Σi-2DPA are ΠExp

i -C.

Proof. We first prove the upper bound for the most general problem which is inclusion.
Let Pi = (Ai, λi, ψi) be a Σi-2DPA. Note that L(P1) ⊆ L(P2) iff L(P1) ∩ L(P2) = ∅.
So, using Theorem 6.3 we first construct in linear-time a Πi-2DPA P2 = (A′2, λ′2,Ψ′2) such
that L(P2) = L(P2) and then P∩ = (A, λ,Ψ) such that L(P∩) = L(P1) ∩ L(P2). From
the construction in Theorem 5.1 generalised to Σi-2DPA, recall that the formula Ψ is
defined as Ψ(~x1, ~x2) = Ψ1(~x1)∧Ψ′2(~x2). Let Ψ1(~x1) = ∃~y1∀~y2 . . .Ω~yi [ϕ1(~x1, ~y1, . . . , ~yi)], and
Ψ′2(~x2) = ∀~z1∃~z2 . . .

Ω

~zi [ϕ2(~x2, ~z1, . . . , ~zi)] where Ω, Ω

∈ {∃,∀} such that Ω 6= Ω. Hence Ψ is
equivalent to the following Σi+1-formula.

∃~y1∀~z1∀~y2∃~z2∃~y3 . . .Ω~zi−1~yi

Ω

~zi

[
ϕ1(~x1, ~y1, . . . , ~yi) ∧ ϕ2(~x2, ~z1, . . . , ~zi)

]
Finally, emptiness of P∩ can be decided in ΠExp

i by Theorem 6.2.
For the lower bound, we show that the universality problem of Σi-DPA is ΠExp

i -hard.
This holds even for a fixed number of states and vector values in {−1, 0, 1}, showing that
the complexity comes from the formula part. From a Σi-formula Ψ with d free variables, we
construct a Parikh automaton P = (A, λ,Ψ) of dimension d over alphabet Σ = {a+

i , a
−
i }1≤i≤d.

Any word w over Σ defines a valuation µw(xi) = |w|a+
i
− |w|a−

i
for all 1 ≤ i ≤ d. Conversely,

any valuation µ can be encoded as a word over Σ. Hence, Ψ holds for all values iff for all
w ∈ Σ∗, we have µw |= Ψ. We construct a deterministic one-way automaton A such that
L(A) = Σ∗ and for all w ∈ Σ∗, the value of the run r over w is µw. The automaton A has
one accepting and initial state q over which it loops and, when reading a+

i (resp. a−i ) it
increases dimension i by 1 (resp. by −1). J

I Remark 6.5. Since a 2DPA is a Σ1-2DPA, and the class coNExpTime is the same as ΠExp
1 ,

we have that Theorem 6.4 for i = 1 is exactly the same as Theorem 5.2.
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7 Conclusion

In this paper, we have provided tight complexity bounds for the emptiness, inclusion,
universality and equivalence problems for various classes of two-way Parikh automata. We
have shown that when the semi-linear constraint is given as a Σi-formula, for i > 1, the
complexity of those problems is dominated by the complexity of checking satisfiability or
validity of Σi-formulas. We have shown that 2DPA (resp. bounded-visit 2PA) have the same
expressive power as unambiguous (one-way) PA (resp. non-deterministic PA). Remark that
the same techniques apply to show that 2UPA are equivalent to 2DPA, and hence to UPA,
exactly as it is done for string transducer in [7, 8].

In terms of succinctness, it is already known that 2DFA are exponentially more succinct
than FA, witnessed for instance by the family Dn = {uu | u ∈ {0, 1}∗∧|u| = n}. However Dn

is accepted by a PA with polynomially many states in n and vectors of dimension 2n which
permit to store each input letters and check equality with the acceptance constraint. We
conjecture that 2DPA are exponentially more succinct than PA, witnessed by the language
Ln of Section 2. We leave as future work the introduction of techniques allowing to prove
such results (pumping lemmas), as the dimension and acceptance constraint size has to be
taken into account as well, as shown with Dn.

Finally, we plan to extend the pattern logic of [10], which intensively uses (one-way)
Parikh automata for its model-checking algorithm, to reason about structural properties
of two-way machines, and use two-way Parikh automata emptiness checking algorithms for
model-checking this new logic.

PA

bounded-visit
2PA

fixed-visit
2PA

Exp
O(1)

PTime

O(1)

UPA Exp←−→ 2DPA

2PA

Two-way automata Non-emptiness Universality & Inclusion
2PA undecidable undecidable

bounded-visit 2PA PSpace-C undecidable
fixed-visit 2PA NP-C undecidable

2DPA NP-C coNExpTime-C
bounded-visit Σi-2PA ΣExp

i−1-C undecidable
fixed-visit Σi-2PA ΣExp

i−1-C undecidable
Σi-2DPA ΣExp

i−1-C ΠExp
i -C

Figure 4 Summary of expressivenesses and complexities where bounded-visit 2PA (resp. fixed-visit
2PA) holds for k-visit 2PA for some k (resp. for some fixed k).
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