188 research outputs found

    Two-Way Visibly Pushdown Automata and Transducers

    Full text link
    Automata-logic connections are pillars of the theory of regular languages. Such connections are harder to obtain for transducers, but important results have been obtained recently for word-to-word transformations, showing that the three following models are equivalent: deterministic two-way transducers, monadic second-order (MSO) transducers, and deterministic one-way automata equipped with a finite number of registers. Nested words are words with a nesting structure, allowing to model unranked trees as their depth-first-search linearisations. In this paper, we consider transformations from nested words to words, allowing in particular to produce unranked trees if output words have a nesting structure. The model of visibly pushdown transducers allows to describe such transformations, and we propose a simple deterministic extension of this model with two-way moves that has the following properties: i) it is a simple computational model, that naturally has a good evaluation complexity; ii) it is expressive: it subsumes nested word-to-word MSO transducers, and the exact expressiveness of MSO transducers is recovered using a simple syntactic restriction; iii) it has good algorithmic/closure properties: the model is closed under composition with a unambiguous one-way letter-to-letter transducer which gives closure under regular look-around, and has a decidable equivalence problem

    Logical and Algebraic Characterizations of Rational Transductions

    Full text link
    Rational word languages can be defined by several equivalent means: finite state automata, rational expressions, finite congruences, or monadic second-order (MSO) logic. The robust subclass of aperiodic languages is defined by: counter-free automata, star-free expressions, aperiodic (finite) congruences, or first-order (FO) logic. In particular, their algebraic characterization by aperiodic congruences allows to decide whether a regular language is aperiodic. We lift this decidability result to rational transductions, i.e., word-to-word functions defined by finite state transducers. In this context, logical and algebraic characterizations have also been proposed. Our main result is that one can decide if a rational transduction (given as a transducer) is in a given decidable congruence class. We also establish a transfer result from logic-algebra equivalences over languages to equivalences over transductions. As a consequence, it is decidable if a rational transduction is first-order definable, and we show that this problem is PSPACE-complete

    First-order definable string transformations

    Get PDF
    The connection between languages defined by computational models and logic for languages is well-studied. Monadic second-order logic and finite automata are shown to closely correspond to each-other for the languages of strings, trees, and partial-orders. Similar connections are shown for first-order logic and finite automata with certain aperiodicity restriction. Courcelle in 1994 proposed a way to use logic to define functions over structures where the output structure is defined using logical formulas interpreted over the input structure. Engelfriet and Hoogeboom discovered the corresponding "automata connection" by showing that two-way generalised sequential machines capture the class of monadic-second order definable transformations. Alur and Cerny further refined the result by proposing a one-way deterministic transducer model with string variables---called the streaming string transducers---to capture the same class of transformations. In this paper we establish a transducer-logic correspondence for Courcelle's first-order definable string transformations. We propose a new notion of transition monoid for streaming string transducers that involves structural properties of both underlying input automata and variable dependencies. By putting an aperiodicity restriction on the transition monoids, we define a class of streaming string transducers that captures exactly the class of first-order definable transformations.Comment: 31 page

    Synthesis of Data Word Transducers

    Full text link
    In reactive synthesis, the goal is to automatically generate an implementation from a specification of the reactive and non-terminating input/output behaviours of a system. Specifications are usually modelled as logical formulae or automata over infinite sequences of signals (ω\omega-words), while implementations are represented as transducers. In the classical setting, the set of signals is assumed to be finite. In this paper, we consider data ω\omega-words instead, i.e., words over an infinite alphabet. In this context, we study specifications and implementations respectively given as automata and transducers extended with a finite set of registers. We consider different instances, depending on whether the specification is nondeterministic, universal or deterministic, and depending on whether the number of registers of the implementation is given or not. In the unbounded setting, we show undecidability for both universal and nondeterministic specifications, while decidability is recovered in the deterministic case. In the bounded setting, undecidability still holds for nondeterministic specifications, but can be recovered by disallowing tests over input data. The generic technique we use to show the latter result allows us to reprove some known result, namely decidability of bounded synthesis for universal specifications

    The Complexity of Transducer Synthesis from Multi-Sequential Specifications

    Get PDF

    Iterated Regret Minimization in Game Graphs

    Full text link
    Iterated regret minimization has been introduced recently by J.Y. Halpern and R. Pass in classical strategic games. For many games of interest, this new solution concept provides solutions that are judged more reasonable than solutions offered by traditional game concepts -- such as Nash equilibrium --. Although computing iterated regret on explicit matrix game is conceptually and computationally easy, nothing is known about computing the iterated regret on games whose matrices are defined implicitly using game tree, game DAG or, more generally game graphs. In this paper, we investigate iterated regret minimization for infinite duration two-player quantitative non-zero sum games played on graphs. We consider reachability objectives that are not necessarily antagonist. Edges are weighted by integers -- one for each player --, and the payoffs are defined by the sum of the weights along the paths. Depending on the class of graphs, we give either polynomial or pseudo-polynomial time algorithms to compute a strategy that minimizes the regret for a fixed player. We finally give algorithms to compute the strategies of the two players that minimize the iterated regret for trees, and for graphs with strictly positive weights only.Comment: 19 pages. Bug in introductive example fixed

    Expectations or Guarantees? I Want It All! A crossroad between games and MDPs

    Full text link
    When reasoning about the strategic capabilities of an agent, it is important to consider the nature of its adversaries. In the particular context of controller synthesis for quantitative specifications, the usual problem is to devise a strategy for a reactive system which yields some desired performance, taking into account the possible impact of the environment of the system. There are at least two ways to look at this environment. In the classical analysis of two-player quantitative games, the environment is purely antagonistic and the problem is to provide strict performance guarantees. In Markov decision processes, the environment is seen as purely stochastic: the aim is then to optimize the expected payoff, with no guarantee on individual outcomes. In this expository work, we report on recent results introducing the beyond worst-case synthesis problem, which is to construct strategies that guarantee some quantitative requirement in the worst-case while providing an higher expected value against a particular stochastic model of the environment given as input. This problem is relevant to produce system controllers that provide nice expected performance in the everyday situation while ensuring a strict (but relaxed) performance threshold even in the event of very bad (while unlikely) circumstances. It has been studied for both the mean-payoff and the shortest path quantitative measures.Comment: In Proceedings SR 2014, arXiv:1404.041

    Streamability of nested word transductions

    Full text link
    We consider the problem of evaluating in streaming (i.e., in a single left-to-right pass) a nested word transduction with a limited amount of memory. A transduction T is said to be height bounded memory (HBM) if it can be evaluated with a memory that depends only on the size of T and on the height of the input word. We show that it is decidable in coNPTime for a nested word transduction defined by a visibly pushdown transducer (VPT), if it is HBM. In this case, the required amount of memory may depend exponentially on the height of the word. We exhibit a sufficient, decidable condition for a VPT to be evaluated with a memory that depends quadratically on the height of the word. This condition defines a class of transductions that strictly contains all determinizable VPTs

    A Generalised Twinning Property for Minimisation of Cost Register Automata

    Get PDF
    Weighted automata (WA) extend finite-state automata by associating with transitions weights from a semiring S, defining functions from words to S. Recently, cost register automata (CRA) have been introduced as an alternative model to describe any function realised by a WA by means of a deterministic machine. Unambiguous WA over a monoid (M, ⊗) can equivalently be described by cost register automata whose registers take their values in M, and are updated by operations of the form x: = y ⊗ c, with c ∈ M. This class is denoted by CRA⊗c(M). We introduce a twinning property and a bounded variation property parametrised by an integer k, such that the corresponding notions introduced originally by Choffrut for finite-state transducers are obtained for k = 1. Given an unambiguous weighted automaton W over an infinitary group (G, ⊗) realizing some function f, we prove that the three following properties are equivalent: i) W satisfies the twinning property of order k, ii) f satisfies the k-bounded variation property, and iii) f can be described by a CRA⊗c(G) with at most k registers. In the spirit of tranducers, we actually prove this result in a more general setting by considering machines over the semiring of finite sets of elements from (G, ⊗): the three properties are still equivalent for such finite-valued weighted automata, that is the ones associating with words subsets of G of cardinality at most ℓ, for some natural ℓ. Moreover, we show that if the operation ⊗ of G is commutative and computable, then one can decide whether a WA satisfies the twinning property of order k. As a corollary, this allows to decide the register minimisation problem for the class CRA⊗c(G). Last, we prove that a similar result holds for finite-valued finite-state transducers, and that the register minimisation problem for the class CRA.c (B*) is Pspace-complete

    Register Transducers Are Marble Transducers

    Get PDF
    Deterministic two-way transducers define the class of regular functions from words to words. Alur and CernĂœ introduced an equivalent model of transducers with registers called copyless streaming string transducers. In this paper, we drop the “copyless” restriction on these machines and show that they are equivalent to two-way transducers enhanced with the ability to drop marks, named “marbles”, on the input. We relate the maximal number of marbles used with the amount of register copies performed by the streaming string transducer. Finally, we show that the class membership problems associated with these models are decidable. Our results can be interpreted in terms of program optimization for simple recursive and iterative programs.SCOPUS: cp.pinfo:eu-repo/semantics/publishe
    • 

    corecore