25 research outputs found

    Ultra-High-Density QTL Marker Mapping for Seedling Photomorphogenesis Mediating Arabidopsis Establishment in Southern Patagonia

    Get PDF
    Arabidopsis thaliana shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, Arabidopsis has a high potential for the identification of genes underlying ecologically important complex traits, thus providing new insights on genome evolution. Previous research suggested that distinct light responses were crucial for Arabidopsis establishment in a peculiar ecological niche of southern Patagonia. The aim of this study was to explore the genetic basis of contrasting light-associated physiological traits that may have mediated the rapid adaptation to this new environment. From a biparental cross between the photomorphogenic contrasting accessions Patagonia (Pat) and Columbia (Col-0), we generated a novel recombinant inbred line (RIL) population, which was entirely next-generation sequenced to achieve ultra-high-density saturating molecular markers resulting in supreme mapping sensitivity. We validated the quality of the RIL population by quantitative trait loci (QTL) mapping for seedling de-etiolation, finding seven QTLs for hypocotyl length in the dark and continuous blue light (Bc), continuous red light (Rc), and continuous far-red light (FRc). The most relevant QTLs, Rc1 and Bc1, were mapped close together to chromosome V; the former for Rc and Rc/dark, and the latter for Bc, FRc, and dark treatments. The additive effects of both QTLs were confirmed by independent heterogeneous inbred families (HIFs), and we explored TZP and ABA1 as potential candidate genes for Rc1 and Bc1QTLs, respectively. We conclude that the Pat × Col-0 RIL population is a valuable novel genetic resource to explore other adaptive traits in Arabidopsis.Fil: Matsusaka Quiliano, Daniel Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Filiault, Daniele. Austrian Academy of Sciences; AustriaFil: Sanchez, Diego Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Botto, Javier Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentin

    Multiple FLC haplotypes defined by independent cis-regulatory variation underpin life history diversity in Arabidopsis thaliana

    Get PDF
    Relating molecular variation to phenotypic diversity is a central goal in evolutionary biology. In Arabidopsis thaliana, FLOWERING LOCUS C (FLC) is a major determinant of variation in vernalization—the acceleration of flowering by prolonged cold. Here, through analysis of 1307 A. thaliana accessions, we identify five predominant FLC haplotypes defined by noncoding sequence variation. Genetic and transgenic experiments show that they are functionally distinct, varying in FLC expression level and rate of epigenetic silencing. Allelic heterogeneity at this single locus accounts for a large proportion of natural variation in vernalization that contributes to adaptation of A. thaliana

    Native Environment Modulates Leaf Size and Response to Simulated Foliar Shade across Wild Tomato Species

    Get PDF
    The laminae of leaves optimize photosynthetic rates by serving as a platform for both light capture and gas exchange, while minimizing water losses associated with thermoregulation and transpiration. Many have speculated that plants maximize photosynthetic output and minimize associated costs through leaf size, complexity, and shape, but a unifying theory linking the plethora of observed leaf forms with the environment remains elusive. Additionally, the leaf itself is a plastic structure, responsive to its surroundings, further complicating the relationship. Despite extensive knowledge of the genetic mechanisms underlying angiosperm leaf development, little is known about how phenotypic plasticity and selective pressures converge to create the diversity of leaf shapes and sizes across lineages. Here, we use wild tomato accessions, collected from locales with diverse levels of foliar shade, temperature, and precipitation, as a model to assay the extent of shade avoidance in leaf traits and the degree to which these leaf traits correlate with environmental factors. We find that leaf size is correlated with measures of foliar shade across the wild tomato species sampled and that leaf size and serration correlate in a species-dependent fashion with temperature and precipitation. We use far-red induced changes in leaf length as a proxy measure of the shade avoidance response, and find that shade avoidance in leaves negatively correlates with the level of foliar shade recorded at the point of origin of an accession. The direction and magnitude of these correlations varies across the leaf series, suggesting that heterochronic and/or ontogenic programs are a mechanism by which selective pressures can alter leaf size and form. This study highlights the value of wild tomato accessions for studies of both morphological and light-regulated development of compound leaves, and promises to be useful in the future identification of genes regulating potentially adaptive plastic leaf traits

    A Genome-Wide Association Study Identifies Variants Underlying the Arabidopsis thaliana Shade Avoidance Response

    Get PDF
    Shade avoidance is an ecologically and molecularly well-understood set of plant developmental responses that occur when the ratio of red to far-red light (R∶FR) is reduced as a result of foliar shade. Here, a genome-wide association study (GWAS) in Arabidopsis thaliana was used to identify variants underlying one of these responses: increased hypocotyl elongation. Four hypocotyl phenotypes were included in the study, including height in high R∶FR conditions (simulated sun), height in low R∶FR conditions (simulated shade), and two different indices of the response of height to low R∶FR. GWAS results showed that variation in these traits is controlled by many loci of small to moderate effect. A known PHYC variant contributing to hypocotyl height variation was identified and lists of significantly associated genes were enriched in a priori candidates, suggesting that this GWAS was capable of generating meaningful results. Using metadata such as expression data, GO terms, and other annotation, we were also able to identify variants in candidate de novo genes. Patterns of significance among our four phenotypes allowed us to categorize associations into three groups: those that affected hypocotyl height without influencing shade avoidance, those that affected shade avoidance in a height-dependent fashion, and those that exerted specific control over shade avoidance. This grouping allowed for the development of explicit hypotheses about the genetics underlying shade avoidance variation. Additionally, the response to shade did not exhibit any marked geographic distribution, suggesting that variation in low R∶FR–induced hypocotyl elongation may represent a response to local conditions

    Associations with previously-identified SNPs in <i>PHYC</i> and <i>PHYB</i>.

    No full text
    <p>−log10 <i>P</i>-value of Kruskal-Wallis and EMMA associations between hypocotyl height in high R∶FR and candidate SNPs in <i>PHYC</i> and <i>PHYB</i> identified in Balasubramanian et al. <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1002589#pgen.1002589-Balasubramanian1" target="_blank">[30]</a> and Filiault et al. <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1002589#pgen.1002589-Filiault1" target="_blank">[39]</a>.</p

    Associations with <i>a priori</i> candidate genes.

    No full text
    <p>−log10 <i>P</i>-value of most significant Kruskal-Wallis and EMMA associations between hypocotyl phenotypes and <i>a priori</i> candidate genes.</p>*<p>Significance pattern categories: 1 = general control of hypocotyl height, 2 = control of shade avoidance via hypocotyl height, 3 = specific control of shade avoidance response.</p

    Hypocotyl height phenotypes.

    No full text
    <p>(A) Histograms of hypocotyl height for seedings grown under high R∶FR (pink) or low R∶FR (blue) treatments. (B) Hypocotyl height reaction norms of 180 <i>Arabidopsis</i> accessions. Reaction norms for the seven highest-responding accessions (in descending order: 9057, 8242, 6929, 6009, 6914, 6968, 8231) are plotted with red lines, while reaction norms for the seven lowest-responding accession (in ascending order: 6928, 8304, 7515, 6943, 8395, 6916, 8337) are plotted in blue. The three lowest-responding accessions showed a slight negative response to low R∶FR (−0.41, −0.25, and −0.11 millimeters).</p

    Parameters from the phenotype mixed effects model.

    No full text
    <p>Estimates of the variance and standard deviation of random effects from the mixed effect model used to generate GWAS phenotypes.</p

    Manhattan plots of GWAS results.

    No full text
    <p>Genome-wide distribution of the −log10 <i>P</i>-values of SNP/phenotype associations using the Kruskal-Wallis (left panels) and EMMA (right panels) methods. For clarity, only SNPs with a −log10<i>P</i>-value  = 2 are shown. Out of 214548 SNPs assayed, 11102, 6864, 11616, and 5301 SNPs are represented in the Kruskal-Wallis panels (top to bottom) while 2538, 2698, 2399, and 2802 SNPs are represented in the EMMA panels (top to bottom). SNPs are accurately plotted according to their position along the appropriate chromosome. Plotting colors alternate between blue and green in order to facilitate the visualization of individual chromosomes.</p
    corecore