22,884 research outputs found

    Doped AB_2 Hubbard Chain: Spiral, Nagaoka and RVB States, Phase Separation and Luttinger Liquid Behavior

    Full text link
    We present an extensive numerical study of the Hubbard model on the doped AB2_2 chain, both in the weak coupling and the infinite-U limit. Due to the special unit cell topology, this system displays a rich variety of phases as function of hole doping (δ\delta) away from half-filling. Near half-filling, spiral states develop in the weak coupling regime, while Nagaoka itinerant ferromagnetism is observed in the infinite-U limit. For higher doping the system phase-separates before reaching a Mott insulating phase of short-range RVB states at δ=1/3\delta=1/3. Moreover, for δ>1/3\delta>1/3 we observe a crossover, which anticipates the Luttinger liquid behavior for δ>2/3\delta > 2/3.Comment: 11 pages, 13 figure

    Magnetism and Electronic Correlations in Quasi-One-Dimensional Compounds

    Full text link
    In this contribution on the celebration of the 80th birthday anniversary of Prof. Ricardo Ferreira, we present a brief survey on the magnetism of quasi-one-dimensional compounds. This has been a research area of intense activity particularly since the first experimental announcements of magnetism in organic and organometallic polymers in the mid 80s. We review experimental and theoretical achievements on the field, featuring chain systems of correlated electrons in a special AB2 unit cell structure present in inorganic and organic compounds

    Coherent and semiclassical states in magnetic field in the presence of the Aharonov-Bohm solenoid

    Full text link
    A new approach to constructing coherent states (CS) and semiclassical states (SS) in magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane, this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS, which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and the time dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2+1)- and (3+1)- dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.Comment: 35 pages, 2 figures. Some typos in (77), (101), and (135) corrected with respect to the published version. Results unchange

    Scalar and Spinor Particles in the Spacetime of a Domain Wall in String Theory

    Full text link
    We consider scalar and spinor particles in the spacetime of a domain wall in the context of low energy effective string theories, such as the generalized scalar-tensor gravity theories. This class of theories allows for an arbitrary coupling of the wall and the (gravitational) scalar field. First, we derive the metric of a wall in the weak-field approximation and we show that it depends on the wall's surface energy density and on two post-Newtonian parameters. Then, we solve the Klein-Gordon and the Dirac equations in this spacetime. We obtain the spectrum of energy eigenvalues and the current density in the scalar and spinor cases, respectively. We show that these quantities, except in the case of the energy spectrum for a massless spinor particle, depend on the parameters that characterize the scalar-tensor domain wall.Comment: LATEX file, 21 pages, revised version to appear in Phys. Rev.

    Ecofisiologia de plantas da caatinga.

    Get PDF
    O Nordeste brasileiro abrange uma área de 1.600.000 km2 dos quais aproximadamente 1.083.790 km2 corresponde a área da zona semi-árida, que se caracteriza basicamente pela escassez, irregularidade e má distribuição das chuvas. As chuvas que caem sobre a região variam entre, 300mm a 950 mm por ano, com 80% da precipitação ocorrendo num período de cinco a seis meses. (Embrapa, 2000). A evapotranspiração potencial na região é considerada uma das mais altas do mundo alcançando uma média anual de aproximadamente 2.000 mm. Esta situação é influenciada pela ocorrência de forte insolação altas temperaturas ( médias anuais de 23 a 28 oC ) e umidade relativa em torno de 50% (Valdivieso e Cordeiro, 1985). Os solos do semi-árido são geralmente rasos, deficientes em matéria orgânica, com baixos teores de fósforo e de médio a alto, de potássio
    corecore