research

Doped AB_2 Hubbard Chain: Spiral, Nagaoka and RVB States, Phase Separation and Luttinger Liquid Behavior

Abstract

We present an extensive numerical study of the Hubbard model on the doped AB2_2 chain, both in the weak coupling and the infinite-U limit. Due to the special unit cell topology, this system displays a rich variety of phases as function of hole doping (δ\delta) away from half-filling. Near half-filling, spiral states develop in the weak coupling regime, while Nagaoka itinerant ferromagnetism is observed in the infinite-U limit. For higher doping the system phase-separates before reaching a Mott insulating phase of short-range RVB states at δ=1/3\delta=1/3. Moreover, for δ>1/3\delta>1/3 we observe a crossover, which anticipates the Luttinger liquid behavior for δ>2/3\delta > 2/3.Comment: 11 pages, 13 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020