47 research outputs found

    Comparison of analyses of the XVth QTLMAS common dataset III: Genomic Estimations of Breeding Values

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The QTLMAS XV<sup>th </sup>dataset consisted of pedigree, marker genotypes and quantitative trait performances of animals with a sib family structure. Pedigree and genotypes concerned 3,000 progenies among those 2,000 were phenotyped. The trait was regulated by 8 QTLs which displayed additive, imprinting or epistatic effects. The 1,000 unphenotyped progenies were considered as candidates to selection and their Genomic Estimated Breeding Values (GEBV) were evaluated by participants of the XV<sup>th </sup>QTLMAS workshop. This paper aims at comparing the GEBV estimation results obtained by seven participants to the workshop.</p> <p>Methods</p> <p>From the known QTL genotypes of each candidate, two "true" genomic values (TV) were estimated by organizers: the genotypic value of the candidate (TGV) and the expectation of its progeny genotypic values (TBV). GEBV were computed by the participants following different statistical methods: random linear models (including BLUP and Ridge Regression), selection variable techniques (LASSO, Elastic Net) and Bayesian methods. Accuracy was evaluated by the correlation between TV (TGV or TBV) and GEBV presented by participants. Rank correlation of the best 10% of individuals and error in predictions were also evaluated. Bias was tested by regression of TV on GEBV.</p> <p>Results</p> <p>Large differences between methods were found for all criteria and type of genetic values (TGV, TBV). In general, the criteria ranked consistently methods belonging to the same family.</p> <p>Conclusions</p> <p>Bayesian methods - A<B<C<Cπ - were the most efficient whatever the criteria and the True Value considered (with the notable exception of the MSEP of the TBV). The selection variable procedures (LASSO, Elastic Net and some adaptations) performed similarly, probably at a much lower computing cost. The TABLUP, which combines BayesB and GBLUP, generally did well. The simplest methods, GBLUP or Ridge Regression, and even worst, the fixed linear model, were much less efficient.</p

    QTL detection for a medium density SNP panel: comparison of different LD and LA methods

    Get PDF
    Background: New molecular technologies allow high throughput genotyping for QTL mapping with dense genetic maps. Therefore, the interest of linkage analysis models against linkage disequilibrium could be questioned. As these two strategies are very sensitive to marker density, experimental design structures, linkage disequilibrium extent and QTL effect, we propose to investigate these parameters effects on QTL detection.[br/] Methods: The XIIIth QTLMAS workshop simulated dataset was analysed using three linkage disequilibrium models and a linkage analysis model. Interval mapping, multivariate and interaction between QTL analyses were performed using QTLMAP.[br/] Results: The linkage analysis models identified 13 QTL, from which 10 mapped close of the 18 which were simulated and three other positions being falsely mapped as containing a QTL. Most of the QTLs identified by interval mapping analysis are not clearly detected by any linkage disequilibrium model. In addition, QTL effects are evolving during the time which was not observed using the linkage disequilibrium models.[br/] Conclusions: Our results show that for such a marker density the interval mapping strategy is still better than using the linkage disequilibrium only. While the experimental design structure gives a lot of power to both approaches, the marker density and informativity clearly affect linkage disequilibrium efficiency for QTL detection

    Statistical properties of interval mapping methods on quantitative trait loci location: impact on QTL/eQTL analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative trait loci (QTL) detection on a huge amount of phenotypes, like eQTL detection on transcriptomic data, can be dramatically impaired by the statistical properties of interval mapping methods. One of these major outcomes is the high number of QTL detected at marker locations. The present study aims at identifying and specifying the sources of this bias, in particular in the case of analysis of data issued from outbred populations. Analytical developments were carried out in a backcross situation in order to specify the bias and to propose an algorithm to control it. The outbred population context was studied through simulated data sets in a wide range of situations.</p> <p>The likelihood ratio test was firstly analyzed under the "one QTL" hypothesis in a backcross population. Designs of sib families were then simulated and analyzed using the QTL Map software. On the basis of the theoretical results in backcross, parameters such as the population size, the density of the genetic map, the QTL effect and the true location of the QTL, were taken into account under the "no QTL" and the "one QTL" hypotheses. A combination of two non parametric tests - the Kolmogorov-Smirnov test and the Mann-Whitney-Wilcoxon test - was used in order to identify the parameters that affected the bias and to specify how much they influenced the estimation of QTL location.</p> <p>Results</p> <p>A theoretical expression of the bias of the estimated QTL location was obtained for a backcross type population. We demonstrated a common source of bias under the "no QTL" and the "one QTL" hypotheses and qualified the possible influence of several parameters. Simulation studies confirmed that the bias exists in outbred populations under both the hypotheses of "no QTL" and "one QTL" on a linkage group. The QTL location was systematically closer to marker locations than expected, particularly in the case of low QTL effect, small population size or low density of markers, i.e. designs with low power. Practical recommendations for experimental designs for QTL detection in outbred populations are given on the basis of this bias quantification. Furthermore, an original algorithm is proposed to adjust the location of a QTL, obtained with interval mapping, which co located with a marker.</p> <p>Conclusions</p> <p>Therefore, one should be attentive when one QTL is mapped at the location of one marker, especially under low power conditions.</p

    Complex trait subtypes identification using transcriptome profiling reveals an interaction between two QTL affecting adiposity in chicken

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Integrative genomics approaches that combine genotyping and transcriptome profiling in segregating populations have been developed to dissect complex traits. The most common approach is to identify genes whose eQTL colocalize with QTL of interest, providing new functional hypothesis about the causative mutation. Another approach includes defining subtypes for a complex trait using transcriptome profiles and then performing QTL mapping using some of these subtypes. This approach can refine some QTL and reveal new ones.</p> <p>In this paper we introduce Factor Analysis for Multiple Testing (FAMT) to define subtypes more accurately and reveal interaction between QTL affecting the same trait. The data used concern hepatic transcriptome profiles for 45 half sib male chicken of a sire known to be heterozygous for a QTL affecting abdominal fatness (AF) on chromosome 5 distal region around 168 cM.</p> <p>Results</p> <p>Using this methodology which accounts for hidden dependence structure among phenotypes, we identified 688 genes that are significantly correlated to the AF trait and we distinguished 5 subtypes for AF trait, which are not observed with gene lists obtained by classical approaches. After exclusion of one of the two lean bird subtypes, linkage analysis revealed a previously undetected QTL on chromosome 5 around 100 cM. Interestingly, the animals of this subtype presented the same q paternal haplotype at the 168 cM QTL. This result strongly suggests that the two QTL are in interaction. In other words, the "q configuration" at the 168 cM QTL could hide the QTL existence in the proximal region at 100 cM. We further show that the proximal QTL interacts with the previous one detected on the chromosome 5 distal region.</p> <p>Conclusion</p> <p>Our results demonstrate that stratifying genetic population by molecular phenotypes followed by QTL analysis on various subtypes can lead to identification of novel and interacting QTL.</p

    A fast algorithm for estimating transmission probabilities in QTL detection designs with dense maps

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the case of an autosomal locus, four transmission events from the parents to progeny are possible, specified by the grand parental origin of the alleles inherited by this individual. Computing the probabilities of these transmission events is essential to perform QTL detection methods.</p> <p>Results</p> <p>A fast algorithm for the estimation of these probabilities conditional to parental phases has been developed. It is adapted to classical QTL detection designs applied to outbred populations, in particular to designs composed of half and/or full sib families. It assumes the absence of interference.</p> <p>Conclusion</p> <p>The theory is fully developed and an example is given.</p

    Cytonuclear interactions remain stable during allopolyploid evolution despite repeated whole-genome duplications in Brassica

    Get PDF
    Several plastid macromolecular protein complexes are encoded by both nuclear and plastid genes. Therefore, cytonuclear interactions are held in place to prevent genomic conflicts that may lead to incompatibilities. Allopolyploidy resulting from hybridization and genome doubling of two divergent species can disrupt these fine-tuned interactions, as newly formed allopolyploid species confront biparental nuclear chromosomes with a uniparentally inherited plastid genome. To avoid any deleterious effects of unequal genome inheritance, preferential transcription of the plastid donor over the other donor has been hypothesized to occur in allopolyploids. We used Brassica as a model to study the effects of paleopolyploidy in diploid parental species, as well as the effects of recent and ancient allopolyploidy in Brassica napus, on genes implicated in plastid protein complexes. We first identified redundant nuclear copies involved in those complexes. Compared with cytosolic protein complexes and with genome-wide retention rates, genes involved in plastid protein complexes show a higher retention of genes in duplicated and triplicated copies. Those redundant copies are functional and are undergoing strong purifying selection. We then compared transcription patterns and sequences of those redundant gene copies between resynthesized allopolyploids and their diploid parents. The neopolyploids showed no biased subgenome expression or maternal homogenization via gene conversion, despite the presence of some non-synonymous substitutions between plastid genomes of parental progenitors. Instead, subgenome dominance was observed regardless of the maternal progenitor. Our results provide new insights on the evolution of plastid protein complexes that could be tested and generalized in other allopolyploid species

    Logo et site web de la plateforme MEANS

    No full text
    corecore