970 research outputs found
Involutions and Trivolutions in Algebras Related to Second Duals of Group Algebras
We define a trivolution on a complex algebra as a non-zero
conjugate-linear, anti-homomorphism on , which is a generalized
inverse of itself, that is, . We give several characterizations of
trivolutions and show with examples that they appear naturally on many Banach
algebras, particularly those arising from group algebras. We give several
results on the existence or non-existence of involutions on the dual of a
topologically introverted space. We investigate conditions under which the dual
of a topologically introverted space admits trivolutions
Interpolation sets and the size of quotients of function spaces on a locally compact group
We devise a fairly general method for estimating the size of quotients between algebras of functions on a locally compact group. This method is based on the concept of interpolation sets and unifies the approaches followed by many authors to obtain particular cases.
Among the applications we find, we obtain that the quotients WAP(G)/B(G) (G being a locally compact group in the class [IN] or a nilpotent locally compact group) and CB(G)/LUC(G) (G being any non-compact non-discrete locally compact group) contain a linearly isometric copy of \ell_\infty(\kappa(G)) where \kappa(G) is the compact covering number of G, and WAP(G), B(G) and LUC(G) refer, respectively, to the algebra of weakly almost periodic functions, the uniform closure of the Fourier-Stieltjes algebra and the bounded right uniformly continuous functions.The research of the second author was partially supported by the Spanish Ministry of Science (including FEDER funds), grant MTM2011-23118 and Fundació Caixa Castelló-Bancaixa, grant number P11B2014-35
A constraint-based WCET computation framework
National audienceOTAWA is a tool dedicated to the WCET computation of critical real-time systems. The tool was enhanced in order to take into account modern micro-architecture features, through an ADL-based approach. Architecture constraints are expresses such that they can be solved by well known efficient constraint solvers. In this paper, we present how we could describe some complex architecture features using the Sim-nML language. We are also concerned by the validation and the animation point of views
Hardware architecture specification and constraint-based WCET computation
International audienceThe analysis of the worst-case execution times is necessary in the design of critical real-time systems. To get sound and precise times, the WCET analysis for these systems must be performed on binary code and based on static analysis. OTAWA, a tool providing WCET computation, uses the Sim-nML language to describe the instruction set and XML files to describe the microarchitecture. The latter information is usually inadequate to describe real architectures and, therefore, requires specific modifications, currently performed by hand, to allow correct time calculation. In this paper, we propose to extend Sim-nML in order to support the description of modern microarchitecture features along the instruction set description and to seamlessly derive the time calculation. This time computation is specified as a constraint solving problem that is automatically synthesized from the extended Sim-nML. Thanks to its declarative aspect, this approach makes easier and modular the description of complex features of microprocessors while maintaining a sound process to compute times
iTETRIS: An Integrated Wireless and Traffic Platform for Real-Time Road Traffic Management Solutions
Wireless vehicular cooperative systems have been identified as an attractive solution to improve road traffic management, thereby contributing to the European goal of safer, cleaner, and more efficient and sustainable traffic solutions. V2V-V2I communication technologies can improve traffic management through real-time exchange of data among vehicles and with road infrastructure. It is also of great importance to investigate the adequate combination of V2V and V2I technologies to ensure the continuous and costefficient operation of traffic management solutions based on wireless vehicular cooperative solutions. However, to adequately design and optimize these communication protocols and analyze the potential of wireless vehicular cooperative systems to improve road traffic management, adequate testbeds and field operational tests need to be conducted.
Despite the potential of Field Operational Tests to get the first insights into the benefits and problems faced in the development of wireless vehicular cooperative systems, there is yet the need to evaluate in the long term and large dimension the true potential benefits of wireless vehicular cooperative systems to improve traffic efficiency. To this aim, iTETRIS is devoted to the development of advanced tools coupling traffic and wireless communication simulators
Formal Architecture Specification for Time Analysis
International audienceWCET calculus is nowadays a must for safety critical systems. As a matter of fact, basic real-time properties rely on accurate timings. Although over the last years, substantial progress has been made in order to get a more precise WCET, we believe that the design of the underlying frameworks deserve more attention. In this paper, we are concerned mainly with two aspects which deal with the modularity of these frameworks. First, we enhance the existing language Sim-nML for describing processors at the instruction level in order to capture modern architecture aspects. Second, we propose a light DSL in order to describe, in a formal prose, architectural aspects related to both the structural aspects as well as to the behavioral aspects
A transient network of telechelic polymers and microspheres : structure and rheology
We study the structure and dynamics of a transient network composed of
droplets of microemulsion connected by telechelic polymers. The polymer induces
a bridging attraction between droplets without changing their shape. A
viscoelastic behaviour is induced in the initially liquid solution,
characterised in the linear regime by a stretched exponential stress
relaxation. We analyse this relaxation in the light of classical theories of
transient networks. The role of the elastic reorganisations in the deformed
network is emphasized. In the non linear regime, a fast relaxation dynamics is
followed by a second one having the same rate as in the linear regime. This
behaviour, under step strain experiments, should induce a non monotonic
behaviour in the elastic component of the stress under constant shear rate.
However, we obtain in this case a singularity in the flow curve very different
from the one observed in other systems, that we interpret in terms of fracture
behaviour.Comment: 9 pages, 4 figure
A Mechanized Semantic Framework for Real-Time Systems
International audienceConcurrent systems consist of many components which may execute in parallel and are complex to design, to analyze, to verify, and to implement. The complexity increases if the systems have real-time constraints, which are very useful in avionic, spatial and other kind of embedded applications. In this paper we present a logical framework for defining and validating real-time formalisms as well as reasoning methods over them. For this purpose, we have implemented in the Coq proof assistant well known semantic domains for real-time systems based on labelled transitions systems and timed runs. We experiment our framework by considering the real-time CSP-based language fiacre, which has been defined as a pivot formalism for modeling languages (aadl, sdl, ...) used in the TOPCASED project. Thus, we define an extension to the formal semantic models mentioned above that facilitates the modeling of fine-grained time constraints of fiacre. Finally, we implement this extension in our framework and provide a proof method environment to deal with real-time system in order to achieve their formal certification
- …
