42 research outputs found

    Poly(hydroxy acids) derived from the self-condensation of hydroxy acids: from polymerization to end-of-life options

    Full text link
    [EN] Poly(hydroxy acids) have been gaining increasing attention in the search for novel sustainable materials to replace petrochemical polymers in packaging applications. Poly(hydroxy acids) are polyesters that are obtained using hydroxy acids as the starting materials, which are derived from renewable resources and biowaste. These biopolymers have attracted a lot of attention since some of them will be in the near future competitive in price to polyolefins, show excellent mechanical and barrier properties, and can be potentially recycled by physical and chemical routes. Most of the current poly(hydroxy acids) are mainly prepared by ring-opening polymerization (ROP) of cyclic monomers derived from hydroxy acids. However, their direct polymerization has received much less attention, while one of the advantages of hydroxy acids resides in the presence of an electrophile and a nucleophile in a single molecule that makes them ideal A-B type monomers for self-condensation. This review focuses on the preparation of poly(hydroxy acids) by the self-condensation polymerization of hydroxy acids. Moreover, their end-of-life options are also evaluated considering not only their biodegradability but also their potential to be chemically recycledThe authors thank the European Commission (EC) for financial support through the project SUSPOL-EJDH2020-ITN-2014-642671 and the Spanish Ministry of Science and Innovation (MICI) through the projects RTI2018-097249-B-C21, MAT2017-83373-R, and MAT-2016-78527-P. S. Torres-Giner also acknowledges MICI for his Juan de la Cierva-Incorporacion contract (IJCI-2016-29675) and the financial support received during his stay at the Institute for Polymer Materials (POLYMAT)Gabirondo, E.; Sangroniz, A.; Etxeberria, A.; Torres-Giner, S.; Sardon, H. (2020). Poly(hydroxy acids) derived from the self-condensation of hydroxy acids: from polymerization to end-of-life options. Polymer Chemistry. 11(30):4861-4874. https://doi.org/10.1039/D0PY00088DS48614874113
    corecore