27 research outputs found

    Proteomic Approaches and Potential Applications in Autosomal Dominant Polycystic Kidney Disease and Fabry Disease

    Full text link
    Although rare, hereditary diseases, such as autosomal dominant polycystic kidney disease (ADPKD) and Fabry disease (FD) may significantly progress towards severe nephropathy. It is crucial to characterize it accurately, predict the course of the illness and estimate treatment effectiveness. A huge effort has been undertaken to find reliable biomarkers that might be useful for an early prevention of the disease progression and/or any invasive diagnostic procedures. The study of proteomics, or the small peptide composition of a sample, is a field of study under continuous development. Over the past years, several strategies have been created to study and define the proteome of samples from widely varying origins. However, urinary proteomics has become essential for discovering novel biomarkers in kidney disease. Here, the extracellular vesicles in human urine that contain cell-specific marker proteins from every segment of the nephron, offer a source of potentially valuable urinary biomarkers, and may play an essential role in kidney development and kidney disease. This review summarizes the relevant literature investigating the proteomic approaches and potential applications in the regular studies of ADPKD and FD

    Phosphate in the Context of Cognitive Impairment and Other Neurological Disorders Occurrence in Chronic Kidney Disease

    Full text link
    The nervous system and the kidneys are linked under physiological states to maintain normal body homeostasis. In chronic kidney disease (CKD), damaged kidneys can impair the central nervous system, including cerebrovascular disease and cognitive impairment (CI). Recently, kidney disease has been proposed as a new modifiable risk factor for dementia. It is reported that uremic toxins may have direct neurotoxic (astrocyte activation and neuronal death) and/or indirect action through vascular effects (cerebral endothelial dysfunction, calcification, and inflammation). This review summarizes the evidence from research investigating the pathophysiological effects of phosphate toxicity in the nervous system, raising the question of whether the control of hyperphosphatemia in CKD would lower patients' risk of developing cognitive impairment and dementia

    Neuropeptide Y as a risk factor for cardiorenal disease and cognitive dysfunction in chronic kidney disease: translational opportunities and challenges

    Full text link
    Neuropeptide Y (NPY) is a 36-amino-acid peptide member of a family also including peptide YY and pancreatic polypeptide, which are all ligands to Gi/Go coupled receptors. NPY regulates several fundamental biologic functions including appetite/satiety, sex and reproduction, learning and memory, cardiovascular and renal function and immune functions. The mesenteric circulation is a major source of NPY in the blood in man and this peptide is considered a key regulator of gut-brain cross talk. A progressive increase in circulating NPY accompanies the progression of chronic kidney disease (CKD) toward kidney failure and NPY robustly predicts cardiovascular events in this population. Furthermore, NPY is suspected as a possible player in accelerated cognitive function decline and dementia in patients with CKD and in dialysis patients. In theory, interfering with the NPY system has relevant potential for the treatment of diverse diseases from cardiovascular and renal diseases to diseases of the central nervous system. Pharmaceutical formulations for effective drug delivery and cost, as well as the complexity of diseases potentially addressable by NPY/NPY antagonists, have been a problem until now. This in part explains the slow progress of knowledge about the NPY system in the clinical arena. There is now renewed research interest in the NPY system in psychopharmacology and in pharmacology in general and new studies and a new breed of clinical trials may eventually bring the expected benefits in human health with drugs interfering with this system

    Albuminuria as a risk factor for mild cognitive impairment and dementia-what is the evidence?

    Get PDF
    Kidney dysfunction can profoundly influence many organ systems, and recent evidence suggests a potential role for increased albuminuria in the development of mild cognitive impairment (MCI) or dementia. Epidemiological studies conducted in different populations have demonstrated that the presence of increased albuminuria is associated with a higher relative risk of MCI or dementia both in cross-sectional analyses and in studies with long-term follow-up. The underlying pathophysiological mechanisms of albuminuria's effect are as yet insufficiently studied, with several important knowledge gaps still present in a complex relationship with other MCI and dementia risk factors. Both the kidney and the brain have microvascular similarities that make them sensitive to endothelial dysfunction involving different mechanisms, including oxidative stress and inflammation. The exact substrate of MCI and dementia is still under investigation, however available experimental data indicate that elevated albuminuria and low glomerular filtration rate are associated with significant neuroanatomical declines in hippocampal function and grey matter volume. Thus, albuminuria may be critical in the development of cognitive impairment and its progression to dementia. In this review, we summarize the available evidence on albuminuria's link to MCI and dementia, point to existing gaps in our knowledge and suggest actions to overcome them. The major question of whether interventions that target increased albuminuria could prevent cognitive decline remains unanswered. Our recommendations for future research are aimed at helping to plan clinical trials and to solve the complex conundrum outlined in this review, with the ultimate goal of improving the lives of patients with chronic kidney disease

    Brain dysfunction in tubular and tubulointerstitial kidney diseases

    Get PDF
    Kidney function has two important elements: glomerular filtration and tubular function (secretion and reabsorption). A persistent decrease in glomerular filtration rate (GFR), with or without proteinuria, is diagnostic of chronic kidney disease (CKD). While glomerular injury or disease is a major cause of CKD and usually associated with proteinuria, predominant tubular injury, with or without tubulointerstitial disease, is typically non-proteinuric. CKD has been linked with cognitive impairment, but it is unclear how much this depends on a decreased GFR, altered tubular function or the presence of proteinuria. Since CKD is often accompanied by tubular and interstitial dysfunction, we explore here for the first time the potential role of the tubular and tubulointerstitial compartments in cognitive dysfunction. To help address this issue we selected a group of primary tubular diseases with preserved GFR in which to review the evidence for any association with brain dysfunction. Cognition, mood, neurosensory and motor disturbances are not well characterized in tubular diseases, possibly because they are subclinical and less prominent than other clinical manifestations. The available literature suggests that brain dysfunction in tubular and tubulointerstitial diseases is usually mild and is more often seen in disorders of water handling. Brain dysfunction may occur when severe electrolyte and water disorders in young children persist over a long period of time before the diagnosis is made. We have chosen Bartter and Gitelman syndromes and nephrogenic diabetes insipidus as examples to highlight this topic. We discuss current published findings, some unanswered questions and propose topics for future research

    The role of FGF23 as an early marker of chronic renal failure

    No full text
    Chronic renal failure is a growing problem worldwide and it is particularly important to note that this is irreversible and progressive illness with many complications. That is why it is necessary early to be diagnosed and, as soon as possible, adequately treated. Clinical studies have shown a correlation between fibroblast growth factor 23 (FGF23) and cardiovascular risk factors, left ventricular hypertrophy and vascular calcification. Therefore, FGF23 gives the possibility for the evaluation of new therapeutic modalities in order to improve survival of patients with chronic renal disease. Further studies are needed to clarify the precise mechanism of action and regulation of FGF23 under normal circumstances and as part of chronic renal failure

    The Complexity of FGF23 Effects on Cardiomyocytes in Normal and Uremic Milieu

    Full text link
    Fibroblast growth factor-23 (FGF23) appears to be one of the most promising biomarkers and predictors of cardiovascular risk in patients with heart disease and normal kidney function, but moreover in those with chronic kidney disease (CKD). This review summarizes the current knowledge of FGF23 mechanisms of action in the myocardium in the physiological and pathophysiological state of CKD, as well as its cross-talk to other important signaling pathways in cardiomyocytes. In this regard, current therapeutic possibilities and future perspectives are also discussed

    Aeromonas Sobria: a Rare Cause of Continuous Ambulatory Peritoneal Dialysis-Related Peritonitis

    Get PDF
    Peritonitis is a very common complication in patients treated with continuous ambulatory peritoneal dialysis. The most common causes are gram positive cocci (part of the normal skin flora), and then gram negative bacteria, while fungi are listed as a rare cause of peritonitis. Aeromonas species are identified as a rare cause of continuous ambulatory peritoneal dialysis-related peritonitis. Among them, Aeromonas hydrophila is somewhat more common, followed by Aeromonas caviae.Case presentation. We reported a case of continuous ambulatory peritoneal dialysis peritonitis caused by Aeromonas sobria that is extremely rare cause of this type of peritonitis. In our patient, pseudomembranous colitis occured as a complication and, reinfection – another episode of peritonitis with Klebsiella pneumoniae. Treatment with third-episode cephalosporins was successful and patient continued treatment with continuous ambulatory peritoneal dialysis. Conclusions. The rare causes of peritonitis should not be ignored, especially those which lead to increased morbidity and mortality of patients

    Should we consider the cardiovascular system while evaluating CKD-MBD?

    Get PDF
    Cardiovascular (CV) disease is highly prevalent in the population with chronic kidney disease (CKD), where the risk of CV death in early stages far exceeds the risk of progression to dialysis. The presence of chronic kidney disease-mineral and bone disorder (CKD-MBD) has shown a strong correlation with CV events and mortality. As a non-atheromatous process, it could be partially explained why standard CV disease-modifying drugs do not provide such an impact on CV mortality in CKD as observed in the general population. We summarize the potential association of CV comorbidities with the older (parathyroid hormone, phosphate) and newer (FGF23, Klotho, sclerostin) CKD-MBD biomarkers

    What is the place of sclerostin in chronic kidney disease, atherosclerosis, and ageing?

    Full text link
    corecore