752 research outputs found

    Quantum Mass and Central Charge of Supersymmetric Monopoles - Anomalies, current renormalization, and surface terms

    Full text link
    We calculate the one-loop quantum corrections to the mass and central charge of N=2 and N=4 supersymmetric monopoles in 3+1 dimensions. The corrections to the N=2 central charge are finite and due to an anomaly in the conformal central charge current, but they cancel for the N=4 monopole. For the quantum corrections to the mass we start with the integral over the expectation value of the Hamiltonian density, which we show to consist of a bulk contribution which is given by the familiar sum over zero-point energies, as well as surface terms which contribute nontrivially in the monopole sector. The bulk contribution is evaluated through index theorems and found to be nonvanishing only in the N=2 case. The contributions from the surface terms in the Hamiltonian are cancelled by infinite composite operator counterterms in the N=4 case, forming a multiplet of improvement terms. These counterterms are also needed for the renormalization of the central charge. However, in the N=2 case they cancel, and both the improved and the unimproved current multiplet are finite.Comment: 1+40 pages, JHEP style. v2: small corrections and additions, references adde

    Kappa symmetry, generalized calibrations and spinorial geometry

    Full text link
    We extend the spinorial geometry techniques developed for the solution of supergravity Killing spinor equations to the kappa symmetry condition for supersymmetric brane probe configurations in any supergravity background. In particular, we construct the linear systems associated with the kappa symmetry projector of M- and type II branes acting on any Killing spinor. As an example, we show that static supersymmetric M2-brane configurations which admit a Killing spinor representing the SU(5) orbit of Spin(10,1)Spin(10,1) are generalized almost hermitian calibrations and the embedding map is pseudo-holomorphic. We also present a bound for the Euclidean action of M- and type II branes embedded in a supersymmetric background with non-vanishing fluxes. This leads to an extension of the definition of generalized calibrations which allows for the presence of non-trivial Born-Infeld type of fields in the brane actions.Comment: 9 pages, latex, references added and minor change

    BMQ

    Full text link
    BMQ: Boston Medical Quarterly was published from 1950-1966 by the Boston University School of Medicine and the Massachusetts Memorial Hospitals. Pages 49-52, v17n2, provided courtesy of Howard Gotlieb Archival Research Center

    SUMOylation of the mitochondrial fission protein Drpl occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle

    Full text link
    Dynamin‐related protein (Drp) 1 is a key regulator of mitochondrial fission and is composed of GTP‐binding, Middle, insert B, and C‐terminal GTPase effector (GED) domains. Drpl associates with mitochondrial fission sites and promotes membrane constriction through its intrinsic GTPase activity. The mechanisms that regulate Drpl activity remain poorly understood but are likely to involve reversible post‐translational modifications, such as conjugation of small ubiquitin‐like modifier (SUMO) proteins. Through a detailed analysis, we find that Drpl interacts with the SUMO‐conjugating enzyme Ubc9 via multiple regions and demonstrate that Drpl is a direct target of SUMO modification by all three SUMO isoforms. While Drpl does not harbor consensus SUMOylation sequences, our analysis identified2 clusters of lysine residues within the B domain that serve as noncanonical conjugation sites. Although initial analysis indicates that mitochondrial recruitment of ectopically expressed Drpl in response to staurosporine is unaffected by loss of SUMOylation, we find that Drpl SUMOylation is enhanced in the context of the K38A mutation. This dominant‐negative mutant, which is deficient in GTP binding and hydrolysis, does not associate with mitochondria and prevents normal mitochondrial fission. This finding suggests that SUMOylation of Drpl is linked to its activity cycle and is influenced by Drpl localization.—Figueroa‐Romero, C., Iniguez‐Lluhi, J. A., Stadler, J., Chang, C.‐R., Arnoult, D., Keller, P. J., Hong, Y., Blackstone, C., Feldman, E. L. SUMOylation of the mitochondrial fission protein Drpl occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB J. 23, 3917–3927 (2009). www.fasebj.orgPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154272/1/fsb2fj09136630.pd

    Parametric estimation of the driving L\'evy process of multivariate CARMA processes from discrete observations

    Full text link
    We consider the parametric estimation of the driving L\'evy process of a multivariate continuous-time autoregressive moving average (MCARMA) process, which is observed on the discrete time grid (0,h,2h,...)(0,h,2h,...). Beginning with a new state space representation, we develop a method to recover the driving L\'evy process exactly from a continuous record of the observed MCARMA process. We use tools from numerical analysis and the theory of infinitely divisible distributions to extend this result to allow for the approximate recovery of unit increments of the driving L\'evy process from discrete-time observations of the MCARMA process. We show that, if the sampling interval h=hNh=h_N is chosen dependent on NN, the length of the observation horizon, such that NhNN h_N converges to zero as NN tends to infinity, then any suitable generalized method of moments estimator based on this reconstructed sample of unit increments has the same asymptotic distribution as the one based on the true increments, and is, in particular, asymptotically normally distributed.Comment: 38 pages, four figures; to appear in Journal of Multivariate Analysi

    Gene organization and sequence analyses of transfer RNA genes in Trypanosomatid parasites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The protozoan pathogens <it>Leishmania major</it>, <it>Trypanosoma brucei </it>and <it>Trypanosoma cruzi </it>(the Tritryps) are parasites that produce devastating human diseases. These organisms show very unusual mechanisms of gene expression, such as polycistronic transcription. We are interested in the study of tRNA genes, which are transcribed by RNA polymerase III (Pol III). To analyze the sequences and genomic organization of tRNA genes and other Pol III-transcribed genes, we have performed an <it>in silico </it>analysis of the Tritryps genome sequences.</p> <p>Results</p> <p>Our analysis indicated the presence of 83, 66 and 120 genes in <it>L. major, T. brucei </it>and <it>T. cruzi</it>, respectively. These numbers include several previously unannotated selenocysteine (Sec) tRNA genes. Most tRNA genes are organized into clusters of 2 to 10 genes that may contain other Pol III-transcribed genes. The distribution of genes in the <it>L. major </it>genome does not seem to be totally random, like in most organisms. While the majority of the tRNA clusters do not show synteny (conservation of gene order) between the Tritryps, a cluster of 13 Pol III genes that is highly syntenic was identified. We have determined consensus sequences for the putative promoter regions (Boxes A and B) of the Tritryps tRNA genes, and specific changes were found in tRNA-Sec genes. Analysis of transcription termination signals of the tRNAs (clusters of Ts) showed differences between <it>T. cruzi </it>and the other two species. We have also identified several tRNA isodecoder genes (having the same anticodon, but different sequences elsewhere in the tRNA body) in the Tritryps.</p> <p>Conclusion</p> <p>A low number of tRNA genes is present in Tritryps. The overall weak synteny that they show indicates a reduced importance of genome location of Pol III genes compared to protein-coding genes. The fact that some of the differences between isodecoder genes occur in the internal promoter elements suggests that differential control of the expression of some isoacceptor tRNA genes in Tritryps is possible. The special characteristics found in Boxes A and B from tRNA-Sec genes from Tritryps indicate that the mechanisms that regulate their transcription might be different from those of other tRNA genes.</p

    DNA Methylation Signatures Identify Biologically Distinct Subtypes in Acute Myeloid Leukemia

    Get PDF
    Abstract: We hypothesized that DNA methylation distributes into specific patterns in cancer cells, which reflect critical biological differences. We therefore examined the methylation profiles of 344 patients with acute myeloid leukemia (AML). Clustering of these patients by methylation data segregated patients into 16 groups. Five of these groups defined new AML subtypes that shared no other known feature. In addition, DNA methylation profiles segregated patients with CEBPA aberrations from other subtypes of leukemia, defined four epigenetically distinct forms of AML with NPM1 mutations, and showed that established AML1-ETO, CBFb-MYH11, and PML-RARA leukemia entities are associated with specific methylation profiles. We report a 15 gene methylation classifier predictive of overall survival in an independent patient cohort (p < 0.001, adjusted for known covariates)

    Cosmological Perturbations in a Big Crunch/Big Bang Space-time

    Full text link
    A prescription is developed for matching general relativistic perturbations across singularities of the type encountered in the ekpyrotic and cyclic scenarios i.e. a collision between orbifold planes. We show that there exists a gauge in which the evolution of perturbations is locally identical to that in a model space-time (compactified Milne mod Z_2) where the matching of modes across the singularity can be treated using a prescription previously introduced by two of us. Using this approach, we show that long wavelength, scale-invariant, growing-mode perturbations in the incoming state pass through the collision and become scale-invariant growing-mode perturbations in the expanding hot big bang phase.Comment: 47 pages, 4 figure
    • 

    corecore