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SUMMARY
We hypothesized that DNA methylation distributes into specific patterns in cancer cells, which
reflect critical biological differences. We therefore examined the methylation profiles of 344
patients with acute myeloid leukemia (AML). Clustering of these patients by methylation data
segregated patients into 16 groups. Five of these groups defined new AML subtypes that shared no
other known feature. In addition, DNA methylation profiles segregated patients with CEBPA
aberrations from other subtypes of leukemia, defined four epigenetically distinct forms of AML
with NPM1 mutations, and showed that established AML1-ETO, CBFb-MYH11, and PML-
RARA leukemia entities are associated with specific methylation profiles. We report a 15 gene
methylation classifier predictive of overall survival in an independent patient cohort (p < 0.001,
adjusted for known covariates).

SIGNIFICANCE

We show that large-scale genome-wide DNA methylation profiling reveals the existence
of distinct DNA methylation patterns in AML and identifies novel, biologically and
clinically relevant defined AML subgroups. Additionally, we demonstrate that despite
these distinct patterns, a set of genes can be identified that is consistently aberrantly
methylated and silenced in AML versus normal controls, indicating their likely
involvement as a common epigenetic pathway in the leukemic transformation process.
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Finally, we describe a 15 gene DNA methylation classifier capable of predicting overall
survival in an independent cohort of patients and validated as an independent risk factor
in a multivariate analysis, demonstrating the potential of epigenetic markers for use even
in patients for whom clinical biomarkers are not currently available.

INTRODUCTION
Acute myeloid leukemia (AML) is a highly heterogeneous disease from the biological and
clinical standpoint. This remains a significant barrier toward the development of accurate
clinical classification, risk stratification, and targeted therapy of this disease. Epigenetic
control of gene expression has been suggested to play a pivotal role in determining the
biological behavior of cells. One such epigenetic mechanism is DNA cytosine methylation,
which can alter gene expression by creating new binding sites for methylation-dependent
repressor proteins (Jones et al., 1998; Nan et al., 1998), or by disrupting the ability of
transcription factors to bind to their target sequences (Kanduri et al., 2000; Watt and Molloy,
1988). In normal development, the proper distribution of DNA methylation plays a critical
role in tissue differentiation and homeostasis (Li et al., 1992; Okano et al., 1999). Disruption
of normal DNA methylation distribution is a hallmark of cancer and can play critical roles in
initiation, progression, and maintenance of the malignant phenotype. For example, aberrant
hypermethylation and silencing of certain tumor suppressor genes such as p15CDKN2B has
been widely reported in leukemias and other myeloid neoplasms (Cameron et al., 1999;
Christiansen et al., 2003; Shimamoto et al., 2005; Toyota et al., 2001). We recently showed
that hypermethylation and silencing of the master regulatory transcription factor CEBPA
was associated with a leukemia entity with T cell/myeloid features, hypermethylation of a
number of additional transcriptional regulators, and distinctive biological features (Figueroa
et al., 2009b; Wouters et al., 2007).

Based on these data, we hypothesized that DNA methylation distributes into specific
patterns in cancer, and that these methylation profiles impose and reflect critical biological
differences with practical clinical and therapeutic implications. In order to test this
hypothesis, we performed a comprehensive exploration of DNA patterning in human
disease, focusing on a well-characterized cohort of 344 patients with AML.

RESULTS
AML Is Composed of Epigenetically Distinct Diseases

Because the molecular heterogeneity of AML remains only partially resolved, the first goal
of our study was to determine whether DNA methylation profiling could identify new
clinically and biologically relevant disease subtypes. For that purpose, blast cells of 344
newly diagnosed AML patients were subjected to DNA methylation profiling of over 50,000
CpG dinucleotides contained within ~14,000 unique gene loci using the HELP (HpaII tiny
fragment enrichment by ligation-mediated PCR) method (Figueroa et al., 2009a; Khulan et
al., 2006). Table 1 summarizes patients’ characteristics. DNA methylation measured by
HELP was highly concordant with a quantitative single locus DNA methylation validation
assay (correlation coefficient r = −0.88) in these AML patients (see Figure S1A available
online). An unsupervised analysis using hierarchical clustering (1 - Pearson correlation
distance and Ward’s clustering method) showed that leukemias could be distinctly grouped
according to their methylation profiles. A cut-off of 16 clusters was selected for further
analysis since this segregation most accurately overlapped with the currently known
molecular subtypes of AML while at the same time revealing the existence of additional
epigenetic differences among the remaining patients. The stability of these clusters was
verified by performing comparison of multiple cluster analyses using a decreasing number
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of probe sets (based on alternative cutoffs of across-patient standard deviation, Figures S1B–
S1E). Table 2 shows the clinical, cytogenetic, and molecular features of each of the 16
clusters. Three of these patient clusters correspond to AML subtypes defined by the World
Health Organization classification (WHO, 2008) (Figure 1), another eight clusters were
enriched for cases harboring specific genetic or epigenetic lesions, and the remaining five
clusters could not be explained by any known morphologic, cytogenetic, or molecular
feature. Each of these DNA methylation-defined AML subtypes displayed a unique
epigenetic signature when compared with normal bone marrow CD34+ cells (Figure 2 and
Tables S3A–S3P). Taken together, these data indicate that DNA methylation is not
randomly distributed in AML blasts but rather is organized into highly coordinated and well-
defined patterns. In most cases the AML subgroups showed a very strong hypermethylation
signature as compared with normal marrow CD34+ cells. In contrast, a few of the clusters
were hypomethylated in comparison to normal controls. This distinctive patterning is highly
suggestive of a biologically significant role for altered DNA methylation in these different
AML subtypes. The data also suggest that the most prevalent tumor-associated abnormality
in gene promoter DNA methylation abundance is not always hypermethylation but can also
be hypomethylation.

Cytogenetically Defined AML Subtypes Have Unique Epigenetic Signatures
The WHO classification of AML defines cases with t(8;21), inv(16), and t(15;17)
translocations or the presence of the relevant fusion genes as separate entities indicative of a
favorable clinical prognosis (WHO, 2008; Bloomfield et al., 1998; Grimwade et al., 1998).
All three of these AML subtypes presented with a unique methylation profile. Methylation
cluster 1 (n = 26) consisted entirely of cases carrying either inv(16) or t(16;16) (22/26
cases), or the CBFB-MYH11 fusion gene (4/26). Methylation cluster 3 was significantly
enriched for cases positive for t(8;21) (22/31 cases, Fisher’s exact test p value < 1.85 E–25),
and all cases in methylation cluster 6 carried the t(15;17) or the PML-RARA fusion gene (8/8
cases). Patients in the two core binding factor clusters did not further segregate according to
cKit mutation status, indicating that the presence of this mutation does not result in a
specific DNA methylation pattern. Supervised analysis comparing each of these clusters to a
cohort of normal CD34+ cells from healthy donors revealed that they all exhibited a unique
signature, with a strong shift toward genes being methylated in the AML subtypes compared
with CD34+ normal marrow blasts. (Figure 2 and Table S3). The data are consistent with a
scenario whereby each of these fusion oncoproteins can drive epigenetic patterning in
hematopoietic cells, and/or cooperate to drive leukemogenesis when specific sets of
complementary genes are deregulated through aberrant DNA methylation.

Cluster 3 included nine cases that did not present with the t(8;21) or AML1-ETO fusion
gene, yet the survival curves of these patients were indistinguishable from the 22 t(8;21)
positive patients in cluster 3 (log rank test, p value = 0.83). This finding reflects the ability
of DNA methylation profiles to identify a subset of patients with comparable risk and
epigenetic patterning to that of t(8;21) patients despite their lack of the aberrant AML1-ETO
fusion gene. Even though the number of patients is small, the robustness of this common
epigenetic profile is reflected in the fact that these patients all continue to cluster together
even when different numbers of probe sets are used in the analysis (Figures S1B–S1E).
Furthermore, unsupervised analysis of these patients using gene expression data failed to
segregate them according to the presence or absence of the t(8;21) (Figure S1F).

Epigenetic Differences Define NPM1-Mutated, CEBPA-Mutant, and CEBPA-Silenced AMLs
Methylation profiling defined 13 additional AML subtypes. Four of those methylation
clusters (clusters no. 12, 13, 14, and 16) were all significantly enriched for cases carrying
NPM1 mutations (Bonferroni adjusted Fisher’s exact test p values: < 0.0008, < 9.4 E–14, <
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0.02, and < 0.048, respectively). Mutations in exon 12 of the NPM1 gene, which result in
aberrant cytoplasmic localization of the protein, constitute an independent favorable
prognostic marker in AML (Falini et al., 2005). However, when this mutation occurs in the
context of an associated FLT3-ITD, then this favorable prognostic impact is lost (Thiede et
al., 2006). The NPM1 mutant clusters 12 and 13 were enriched for characteristic
morphological subtypes, i.e., FAB M1/M2 (11/12) and M4/M5 (34/45), respectively. The
variety of NPM1 methylation clusters could not be explained solely by the presence or
absence of concurrent FLT3-ITD (Table 2). Although the four clusters were all enriched for
NPM1 mutations, they still presented enough unique characteristics to separate into 4
methylation clusters, each of them with a specific aberrant DNA methylation signature
(Figure 2 and Table S3). Differential methylation in cluster 12 consisted almost entirely of
hypermethylated genes, whereas aberrant DNA methylation in the remaining NPM1 clusters
was more evenly distributed between hyper- and hypomethylation when compared with
normal controls. These data support the notion that NPM1 mutations play a dominant role in
defining AML biology, but can be modified to a significant extent by additional alterations
in epigenetic or unidentified genetic factors. A significant difference in overall survival was
observed for the NPM1 clusters 12, 13, 14, and 16 (log rank test, p = 0.02), when compared
with clusters 1, 3, and 4, which contained patients with inv(16), t(8;21), and CEBPA double
mutations (CEBPA-dm), respectively (Figure 3A). These differences in survival remained
significant after adjustment for age, cytogenetic risk, NPM1 mutation, and FLT3-ITD
mutation status following multivariate analysis (Figure 3B).

The CEBPA transcription factor is a critical mediator of hematopoietic cell differentiation
(Mueller and Pabst, 2006), and CEBPA-dm AMLs are associated with a favorable clinical
prognosis (Wouters et al., 2009). These cases split into two distinct subtypes with different
methylation signatures. Methylation cluster 4 displayed a markedly hypermethylated profile
and consisted entirely of CEBPA-dm cases (n = 14; Fisher’s exact test p < 6.88 e-19). The
clinical outcome of cluster 4 patients was even better than the known favorable risk core-
binding factor leukemias, i.e., t(18;21) and inv(16) (2-year overall survival ± standard error
[SE]; 78.6% ± 11.0%) (Figure 3A). DNA methylation cluster 9 was also significantly
enriched for CEBPA mutant cases (n = 7/9, Fisher’s exact test p < 0.000009), most of which
(5/7) harbored CEBPA double mutations. However, the cluster 9 signature was
predominantly hypomethylated versus controls, suggesting that these CEBPA-related
leukemias are biologically distinct from the CEBPA-dm cluster 4. Cluster 9 contained
insufficient numbers to allow for a comparative survival estimate.

Five of the six patients in cluster 10 had previously been shown to display a phenotype
featuring CEBPA hypermethylation and silencing (CEBPAsil), a hypermethylated gene
profile, but with hypomethylation of certain T cell genes, T cell lineage infidelity, and poor
clinical outcome (Figueroa et al., 2009b; Wouters et al., 2007). The remaining patient in this
cluster 10 had not previously been recognized as a CEBPAsil leukemia (case 5360), but was
demonstrated upon further investigation in this study to indeed display all the characteristic
features of CEBPAsil leukemias (Figure S2 and data not shown). Mutations or silencing of
CEBPA thus appear to result in or to be associated with three epigenetically distinct forms of
leukemia.

Unique Epigenetic Differences Independent of (Cyto)genetically Defined AML Subtypes
Methylation clusters 2, 5, 7, 8, and 15 were defined solely by their DNA methylation
profiles and could not be explained by the enrichment of any currently known recurrent
cytogenetic, molecular, or clinical feature (Table 2). Each of these AML subtypes displays a
unique and significant epigenetic signature versus normal CD34+ controls (Table S3).
Normal cytogenetics AML cases were distributed among all five clusters, and although 5 of
24 cases in cluster 8 harbored 11q23 abnormalities, this was not a defining feature of the
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cluster because it represented only 20.8% of the cases. Gene expression profiles of each of
these epigenetically defined clusters were obtained in a supervised analysis comparing them
with a set of normal CD34+ controls. Each of the five clusters presented with a distinct gene
expression profile. Figure 4A shows the top-scoring networks associated with each of these
expression signatures. Aberrantly expressed genes far exceeded and only partially
overlapped with the aberrantly methylated genes in each cluster, which suggests that even
relatively small changes in epigenetic patterns can have a significant biological impact in the
cell. In order to determine the biological impact of this epigenetic deregulation, we
performed an integrative pathway analysis of the combined aberrantly methylated and
aberrantly expressed genes. This analysis revealed that each of these clusters resulted in
deregulation of different canonical pathways. Cluster 5 showed deregulation of immunity-
related pathways, involving immunodeficiency signaling, cytotoxic T-cell-mediated
apoptosis, and T cell receptor signaling. Cluster 2, on the other hand, was the only one that
significantly deregulated p53 signaling. Clusters 8 and 15 showed predominant deregulation
of pathways involved in molecular mechanisms of cancer, deregulating genes in the DNA
damage repair mechanism such as ATM, CHK1, MDM2, and FANCD2, genes involved in
cell-cycle regulation such as CDK4 and CYCLIN D, as well as genes from the AKT
signaling pathway (Figure 4B). Most notably, a significant difference in survival was
observed between these novel AML subtypes. For instance, clusters 5 and 7 correlated with
an evidently better outcome (2 year overall survival ± SE; 58.8% ± 8.4% and 45.2% ± 8.9%
for clusters 5 and 7, respectively, versus 23.6% ± 5.7%, 26.4% ± 9.2%, and 33.3% ± 13.6%,
for clusters 2, 8, and 15, respectively) (log rank test, p = 0.04). After adjustment for age,
cytogenetic risk, NPM1 mutation, and FLT3-ITD mutation status in a multivariate Cox
proportional hazards regression model including all the clusters with at least ten patients,
four of the five novel clusters presented a statistically significant increased hazard ratio with
respect to the favorable risk inv(16) cluster, whereas cluster 5 did not reach statistical
significance (Figure 3B). Epigenetic profiling thus identified a clinically relevant and
significant difference among AML subtypes not captured by other methodologies.

AMLs Present a Common Epigenetic Signature of Consistently Aberrantly Methylated
Genes

Although the above studies were geared toward finding the unique signatures of
epigenetically defined AML subtypes, we also wondered whether a set of genes could be
defined whose DNA methylation was consistently deregulated across all the AML subtypes.
We indeed identified a common aberrant DNA methylation signature consisting of 45 genes,
most of them hypermethylated, that was consistently detected in at least 10 of the 16
clusters’ methylation signatures and affecting at least 70% of the cases studied (Figure 5A).
Genes in this signature are likely to be part of a common epigenetic pathway involved in
leukemic transformation of hematopoietic cells. Among these genes we found the tumor
suppressor PDZD2, transcriptional regulators (ZNF667, ZNF582, PIAS2, CDK8), nuclear
import receptors (TNPO3, IPO8), and CSDA, a repressor of GM-CSF. A complete list of the
genes in this common signature is found in Table S4.

We next looked at the gene expression levels of these genes on Affymetrix HGU133 Plus
2.0 microarrays performed on the same patients (Verhaak et al., 2009), and compared them
with those of a cohort of normal CD34+ bone marrow cells. Eight of 45 genes had to be
excluded from the analysis due to failure of the gene expression probe sets (n = 6) or
because of lack of representation of the transcript of interest on the expression arrays (n = 2).
For the remaining 37 genes, in all but 5 we found either complete silencing or
downregulation of the corresponding transcript. Eighteen of these showed the expected
differential gene expression when compared with normal CD34+ cells (analysis of variance
[ANOVA] followed by Dunnett’s test p < 0.05) (Figure 5B). Four bidirectional promoters
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showed silencing of one transcript with high expression of the transcript from the opposite
strand. The remaining genes were silenced in both the AMLs and the normal CD34+ cells.
The latter might be explained, as we have previously shown, by the relative insensitivity of
gene expression microarrays to detect differential gene expression of low-abundance
transcripts, which can be overcome by looking at the more sensitive epigenetic marks
(Figueroa et al., 2008). Alternatively, this finding could reflect the establishment of a more
irreversible state of silencing of these genes in the AML blasts compared with the normal
CD34+ cells.

A DNA Methylation Classifier Predicts Clinical Outcome in AML
The fact that aberrant DNA methylation of gene promoters represents an epigenetic
modification that is stably transmitted among leukemic blasts and that this is done in an
organized pattern that correlates with disease subtypes led us to explore its potential as
predictor of important clinical features. Moreover, because DNA is relatively stable in
clinical samples and DNA methylation is easy to measure, it is very likely that small sets of
methylated genes could readily be harnessed as clinically useful biomarkers. Therefore, in
order to determine whether we could identify and validate methylation biomarkers of
independent prognostic value in AML, we applied a three-step approach of model
development and validation. The complete patient cohort was randomly divided into a
training set (n = 200), a test set (n = 95), and an independent validation set (n = 49). Cluster
membership was not taken into consideration for this part of the analysis. Using the
supervised principal components (SuperPC) method of Bair and Tibshirani (2004), a Cox
proportional hazards regression model for overall survival was trained with data in the
training set (see Supplemental Experimental Procedures). Parameters of the model were
chosen so that they maximized performance, as estimated by 10-fold cross-validation on the
training set. The model resulting from the maximum cross-validation performance estimate
was tested on the test set, found predictive, and used to predict survival status on the
independent validation set (Figure 6A). This model included 18 probe sets, corresponding to
15 genes. The predictor model included transcription factors (E2F1, ZFP161), genes related
to protein metabolism (USP50, SRR, PRMT7, GALNT5), regulation of telomeres (SMG6),
and signaling (CXCR5, LCK) (see Table S5 for the complete list of features used in this
model). The predictive performance of this model was validated on the 49-patient
independent validation set both for overall survival (hazard ratio: 1.39, 95% CI = 1.10-1.75;
p < 0.005; SuperPC score range = −5 to 5) (Figure 6B) and event-free survival (hazard ratio:
1.53, 95% CI = 1.21-1.93; p < 0.0002; SuperPC score range = −5 to 5) (Figure 6C). After
controlling for clinical and other known predictors (i.e., age, cytogenetic risk, CEBPA status,
NPM1 mutations, and FLT3-ITD), the model was still found informative (multivariate Cox
proportional hazards model, hazard ratio: 1.29, 95% CI: 1.11-1.49; p < 0.001) (Figures 6D
and 6E). In order to confirm the robustness of DNA methylation markers as predictors of
clinical outcome, we performed 30 additional random splits of the data set into a training set
of 200 patients and a test set of 144 and ran the SuperPC algorithm with a common set of
parameters for all 30 runs. Under these stringent conditions in which the parameters were
not individually selected for the optimal threshold in each run, 26 of the 30 runs validated
with a significant p value of < 0.05 in a Cox proportional hazards regression model (Table
S7). These results demonstrate that DNA methylation status of individual genes can help
predict the future survival of the AML patient, and suggest that DNA methylation
biomarkers should be evaluated alongside other predictors in future model development and
evaluation studies.
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DISCUSSION
This comprehensive and large-scale study of DNA methylation profiles associated with
~14.000 genes in a human disease demonstrates that epigenetic patterning distributes into
signatures of biological and clinical significance and that DNA methylation classifiers can
be derived from population studies with clinical predictive power. From the biological
standpoint, these data offer an opportunity to better understand the mechanisms through
which hematopoietic cells undergo leukemogenesis. Much effort has been invested in
identifying genetic lesions that cooperate with known recurrent translocations such as
t(8;21), t(15;17) and inv(16) or in patients with normal karyotype leukemia. Although this
effort has led to the identification of bona fide leukemogenic mutations such as those in
CEBPA, FLT3, and NPM1, it now appears that recurrent genetic lesions insufficiently
explain the biological diversity of clinical AML. In contrast, our data show that epigenetic
lesions are abundant and common, raising the possibility that a number of the oncogenic
lesions in AML could be epigenetic in nature. Thus, further research exploring the
contribution of genes affected by aberrant DNA methylation seems warranted.

The clinical significance of DNA methylation profiles is underlined by the fact that it
contributes to identifying groups of patients that share a common clinical outcome, in some
cases even beyond what their cytogenetic class is, such as the case of cluster 3 leukemias.
This cluster, which was enriched for t(8;21) patients, included others without this
cytogenetic marker, however, there was no difference in survival between the two
subgroups. Although some of the patients negative for the t(8;21) presented other
cytogenetic and molecular indicators of favorable risk, this finding reflects the existence of a
common DNA methylation profile for these patients. This epigenetic signature aggregated
these leukemias together beyond the presence of other molecular and cytogenetic markers,
and in addition identified additional cases that did not present with any favorable risk
indicator. Similarly, a hypermethylated gene signature defines a subset of leukemias with
CEBPA silencing due to hypermethylation, T cell lineage infidelity, resistance to myeloid
growth factors, and a poor prognosis (Figueroa et al., 2009b). These cases formed cluster 10
in this cohort. AMLs with mutations on both CEBPA alleles or with homozygous mutations
were recently shown to have a highly favorable prognosis (Wouters et al., 2009), and these
cases also presented with a defining DNA methylation profile. Taken together, these data
warrant considering both of these subtypes as distinct leukemia diseases that should be
assigned to risk stratified therapy regimens and explored for the development of specific
targeted therapy.

NPM1 mutations distributed to four related but slightly distinct signatures. These epigenetic
variations cannot be explained by the presence or absence of a concurrent FLT3-ITD,
suggesting that other as yet unrecognized mechanisms might be at play in determining these
different epigenetic groups. We were unable to identify a DNA methylation signature
associated with FLT3 lesions, indicating that mutations of this gene do not exert their effects
in AML by imposing an aberrant epigenetic pattern.

One of the notable findings of this study was the identification of five methylation
signatures with no other common morphologic or molecular features, but with distinct
clinical outcomes, suggesting that these too are unique forms of AML with their own
biological characteristics. It is particularly significant that these AML subtypes cannot be
identified by any available diagnostic method, underlining that epigenetic signatures provide
a critical layer of additional information. The fact that these cases included both normal
karyotype leukemias as well as those with cytogenetic lesions and across multiple FAB
subtypes supports a move away from definitions rooted in standard karyotyping, rather
toward a more functional classification of AML. Future studies will be required to explore
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the biological basis of these epigenetically defined subtypes in the effort to develop risk-
adapted and molecular targeted clinical trials that more accurately reflect interindividual
differences among leukemia patients. However, the presence of a strong hypermethylated
signature in some of these clusters (clusters 2, 7, and 15) (Figure 2D) along with their
unfavorable prognosis leads us to speculate that these patients, as well as those in the
CEBPA-silenced cluster, might benefit from the inclusion of hypomethylating agents as part
of their therapeutic regimen.

Furthermore, in this study we identified the presence of a common DNA methylation
signature that is detected in the vast majority of cases. The nature of the genes found in this
common epigenetic signature, which included tumor suppressors, putative and well-
described transcription factors, nuclear import proteins, apoptosis-related proteins, and a
regulator of myeloid cytokines, is highly suggestive of a role in leukemic transformation. In
addition, we found that this aberrant methylation was accompanied by significant
downregulation of these genes. The fact that these genes are affected in a broad fashion,
across multiple different subtypes of AML, leads us to believe that deregulation of these
genes is most likely a necessary, though probably not sufficient, event during the malignant
transformation process of hematopoietic cells.

Finally, the study identified a robust 15 gene methylation classifier that was predictive of
overall survival, which was generated in an unbiased manner using a large enough data set
to perform training, testing, and independent validation. The methylation predictor was
further validated as an independent risk factor in a multivariate analysis. Because DNA is
stable and readily obtained from clinical specimens, we believe that this DNA methylation
classifier could serve as a clinically useful biomarker used for decision-making in future
clinical trials. In conclusion, although epigenetic deregulation has been recognized as a
hallmark of cancer for some time, the use of epigenomics to further expand our
understanding of the biology of these diseases has only more recently become feasible in the
clinical context. Here we show that DNA methylation profiling is a powerful tool for the
clinical stratification of AML and to further explore and define the biology of this disease.

EXPERIMENTAL PROCEDURES
Patient Samples

We made use of 344 AML cases collected at Erasmus University Medical Center
(Rotterdam) between 1990 and 2008 for which sufficient patient material was available
(Valk et al., 2004; Verhaak et al., 2009). Patients had been treated on study protocols of the
Dutch-Belgian Hemato-Oncology Cooperative Group (HOVON) (available at
http://www.hovon.nl). Patients in the HO04/ A, HO29, and HO42 trials received standard
backbone AML treatment and no significant survival difference has been found between
these slightly different treatments. The HO43 therapy protocol included patients over 60
years of age and showed a more adverse outcome with increasing age as a prognostic
confounder, and for this reason we have included age as a covariable in our statistical
analyses. Samples were processed as previously described (Valk et al., 2004; Verhaak et al.,
2009). A total of 165 of the patients in this study were included in the 285 patient cohort
studied by gene expression by Valk et al. (2004), and the methylation status of 16 patients
was previously reported in a publication by our group (Figueroa et al., 2009b). Median
follow-up time based on survivors was 71 months (range: 7 months to 215 months). Table 1
summarizes patients’ characteristics, Table S1 shows detailed information for each patient,
and Table S2 summarizes treatment information for each cluster. Eight normal bone marrow
CD34+ cell specimens were obtained from the Translational Trials Development and
Support Laboratory, Cincinnati Children’s Hospital (Cincinnati, OH) and Allcells
(Emeryville, CA). This research was approved by the institutional review boards at Weill
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Cornell Medical College and Erasmus University Medical Center, and written donor
informed consent was obtained in accordance with the Declaration of Helsinki.

DNA Methylation Microarrays
High-molecular-weight DNA was isolated from mononuclear cell fractions consisting of >
90% blasts using a standard high salt procedure. The HELP assay was carried out as
previously described (Khulan et al., 2006; Figueroa et al., 2009a) and samples were
hybridized onto a custom human promoter array covering 25,626 HpaII amplifiable
fragments (>50,000 CpGs), annotated to ~14,000 genes (Roche NimbleGen, Design name:
2006-10-26_HG17_HELP_Promoter, Design ID: 4802). HpaII amplifiable fragments (HAF)
are defined as genomic regions contained between two flanking HpaII restriction sites that
are found between 200 and 2000 bp apart. HAF were first realigned to the HG18 build of the
human genome and then annotated to the nearest transcription start site (TSS), allowing for a
maximum distance of 5 kb from the TSS. Hybridization and normalization steps are
described as supplementary methods. All microarray data are available from the GEO
repository (Edgar et al., 2002) (accession number GSE18700).

Gene Expression Microarrays
Gene expression data for these patients had been previously published by Verhaak et al.
(2009) (GEO accession number: GSE6891). Briefly, gene expression data were obtained
using Affymetrix Human Genome 133 Plus2.0 GeneChips. mRNA isolation, labeling,
hybridization, and quality control were carried out as described previously (Valk et al.,
2004). Raw data were processed using the GC-RMA package (version 2.16.0) from
BioConductor (Wu and Irizarry).

Microarray Data Analysis
Statistical analysis was performed using R 2.8.1 (Team, 2008) and BioConductor
(Gentleman et al., 2004). Unsupervised hierarchical clustering of HELP data was performed
using the subset of probe sets (n = 3745) with standard deviation > 1 across all cases. We
used 1- Pearson correlation distance, followed by a Lingoes transformation of the distance
matrix to a Euclidean one (Chessel et al., 2004) and subsequent clustering using Ward’s
method. Clusters were considered to be representative of a given molecular or cytogenetic
finding when > 50% of cases were positive and a two-sided Fisher’s test was significant at p
< 0.05 after adjusting for multiple testing using the Bonferroni method. Identification of the
aberrant DNA methylation signature for each cluster was performed using an ANOVA test,
with correction for multiple testing according to the Benjamini-Hochberg method, followed
by Dunnett’s post hoc test using the normal CD34+ samples as the reference group (Hothorn
et al., 2008). Only genes with adjusted p < 0.05 and an absolute difference in log2(HpaII/
MspI) ratios > 2 (which corresponds to at least 35% difference in DNA methylation) were
selected for each cluster.

Quantitative DNA Methylation Sequencing by MassARRAY EpiTYPER
Validation of HELP data was performed by matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry using EpiTYPER by MassARRAY (Sequenom, San Diego, CA)
on bisulfite-converted DNA as previously described (Ehrich et al., 2005). MassARRAY
primers were designed as previously described (Figueroa et al., 2009b) (see Supplemental
Experimental Procedures for primer sequences).

Pathway Analysis
Ingenuity Pathway Analysis software (Redwood City, CA) was used to perform pathway
analysis of relevant gene signatures. The top-scoring networks were identified for the gene
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expression signatures of the epigenetically defined clusters. A comparative analysis of the
canonical pathways deregulated in each of the clusters, as captured by the integration of the
DNA methylation and gene expression signatures, was also performed. Enrichment for
specific pathways was determined relative to the Ingenuity knowledge database using a
Benjamini-Hochberg adjusted Fisher’s test, at a significance level of adjusted p < 0.05.

Survival Analysis
Kaplan-Meier survival analysis for overall survival was performed to compare survival
differences between different groups of clusters. A multivariate Cox proportional hazards
regression model was constructed for the including age, cytogenetic risk, NPM1 mutation
status, FLT3-ITD mutation status, and cluster membership as the variables to be tested.
Detailed description of the model is found as supplementary methods. All survival analyses
were performed in SAS Version 9.2 (SAS Institute, Inc., Cary, NC) and Stata Version 10.0
(StataCorp, College Station, TX).

Development of an Epigenetic Predictive Model for Overall Survival in AML
In order to develop a prognostic biomarker model predictive of AML overall survival we
used the supervised principal components (SuperPC) algorithm developed by Bair and
Tibshirani (2004). The data set was randomly divided into three groups: a training set (n =
200), a test set (n = 95), and the remaining 49-patient cohort to be used as the independent
validation set. Table S6 summarizes the patient characteristics for each of the three groups.
Table S8 shows the clinical outcome for each patient in the cohort. A detailed description of
the model training, testing and independent validation procedures, as well as the R script
used can be found as Supplemental Experimental Procedures.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. DNA Methylation Segregates AML Patients into 16 Groups
Heatmap representation of a correlation matrix in which each patient’s DNA methylation
profile is correlated with that of the other patients in the data set. Patients are ordered
according to the unsupervised analysis (hierarchical clustering) results, so that highly
correlated patients are located next to each other. Parallel bars on the right of the heatmap
have been used to indicate the principal cytogenetic and molecular findings for each patient.
Cluster membership and cluster feature summaries are described on the left of the heatmap.
Additional information is shown in Figure S1.
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Figure 2. Distinct DNA Methylation Signatures Define each of the 16 Clusters
Heatmap representation of the aberrant DNA methylation signatures of specific clusters
compared with a cohort of normal CD34+ hematopoietic cells obtained from healthy donors.
Each row of the heatmap represents one probe set of the HELP array, and each column
represents an AML patient (denoted by light brown bars) or a healthy donor (denoted by
dark brown bars). (A) DNA methylation signatures for clusters with recurrent translocations,
(B) DNA methylation signatures associated with abnormalities of CEBPA, (C) DNA
methylation signatures for clusters presenting NPM1 mutations, (D) DNA methylation
signatures for the five epigenetically defined clusters. The complete information for each
cluster is contained in Table S3.
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Figure 3. DNA Methylation Captures Clinically Significant Differences among AML Patients
(A) Left: Kaplan-Meier curves for overall survival for the favorable risk clusters 1 (inv(16))
and 4 (CEBPA-dm), and the novel epigenetically defined clusters. For plotting simplicity
curves for clusters 3 (t[8;21]), cluster 5 and cluster 15 were not included in the plot. Figure
S3 shows a Kaplan-Meier plot including all the clusters in the overall survival analysis.
Right: Kaplan-Meier curves for overall survival for the favorable risk clusters 1 (inv[16])
and 4 (CEBPA-dm), and the NPM1 clusters. For plotting simplicity, curves for clusters 3
(t[8;21]) and NPM1 cluster 14 were not included in the plot. Figure S3 shows a Kaplan-
Meier plot including all the clusters in the overall survival analysis.
(B) Kaplan-Meier curves for overall survival (left) for the five novel clusters. Right: Table
summarizing the multivariate Cox proportional hazards regression model, using cluster 1
(inv[16]) as the referent cluster. Additional Kaplan Meier plots are shown in Figure S3.
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Figure 4. Pathway Analysis for the Epigenetically Defined Clusters
(A) Top scoring aberrantly expressed gene networks for each of the five epigenetically
defined clusters. Genes overexpressed compared with normal CD34+ cells are colored in
red, whereas downregulated genes appear in green.
(B) Comparative analysis of the most significantly deregulated canonical pathways of the
five epigenetically defined clusters as captured by an integration of the aberrant epigenetic
and gene expression signatures.
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Figure 5. 45 Genes Are Consistently Aberrantly Methylated in AML
(A) Heatmap representation of the common 45 gene signature consistently aberrantly
methylated in AML. Each row represents a probe set from the HELP microarray and each
column represents a sample.
(B) Boxplots of gene expression levels in 4 representative genes from the 45 gene common
epigenetic signature demonstrating downregulation of expression in the AML samples
compared with normal CD34+ cells. The list of genes is shown in Table S4.
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Figure 6. A DNA Methylation Classifier Predicts Clinical Outcome in AML Patients
(A) Outline describing the steps for building the DNA methylation classifier. In a first step,
200 randomly selected patients were used to identify HELP probe sets that best predicted
survival. The model was then tested on a different cohort of 95 patients (test set). Once the
final model was selected, its performance in predicting survival was tested in an independent
validation set consisting of 49 randomly selected cases.
(B) Kaplan-Meier curves for overall survival for the predicted groups in the independent
validation set. Overall survival was compared between patients in an independent validation
set that were predicted either alive or deceased by the DNA methylation classifier. (Cox
proportional hazards p < 0.005, hazard ratio = 1.39, 95% CI = 1.10, 1.75).
(C) Kaplan-Meier curves for event-free survival for the predicted groups in the independent
validation set. Event-free survival was compared between patients in an independent
validation set that were predicted either alive or deceased by the DNA methylation classifier
(Cox proportional hazards p < 0.0002, hazard ratio: 1.53, 95% CI = 1.21, 1.93).
(D) Kaplan-Meier curves for overall survival for the predicted groups in the combined test
and independent validation sets. Overall survival was compared between patients in the
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combined test and independent validation sets that were predicted either alive or deceased
by the DNA methylation classifier. (Cox Proportional hazards p < 0.000003, hazard ratio:
1.34, 95% CI = 1.18, 1.51).
(E) Multivariate Cox proportional hazards regression model for the DNA methylation
predictor, age, cytogenetic risk, NPM1 mutation, FLT3-ITD and CEBPA mutations. For
additional information please see Tables S5, S6, S7, and S8, as well as supplementary R
scripts.
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Table 1

Patient Characteristics

Gender Total (%)

Male 188 (54)

Female 156 (46)

Age Total (%)

< 60 years 294 (85%)

> 60 years 50 (15%)

Median years (range) 48 (15-77)

FAB Total (%)

M0 12 (3.5%)

M1 75 (21.8%)

M2 82 (23.8%)

M3 9 (2.6%)

M4 65 (18.9%)

M5 70 (20.3%)

M6 3 (0.87%)

NA* 28 (8.1%)

Cytogenetics Total (%)

inv(16)/t(16;16) 30 (9%)

t(8;21) 24 (7%)

t(15;17) 10 (3%)

t(9;22) 2 (0.6%)

t(6;9) 3 (0.9%)

t(v;11q23) 13 (3.8%)

3q abnormalities 2 (0.6%)

del5(q)/del7(q) 19 (5.5%)

Trisomy 8 14 (4%)

del9q 8 (2.3%)

Complex 8 (2.3%)

Normal 152 (44%)

Other 43 (12.5%)

NAa/Failure 13 (3.8%)

Cytogenetic risk Total (%)

Favorable 53 (15%)

Intermediate 231 (67%)

Unfavorable 47 (14%)

NAa 14 (4%)

CEBPA abnormalities Total (%)
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Gender Total (%)

Double mutation 24 (7%)

Single mutation 11 (3.1%)

Silenced 8 (2.4%)

Wild-type 301 (87.5%)

NPM1 mutation Total (%)

Negative 239 (69.5%)

Positive 105 (30.5%)

FLT3-ITD Total (%)

Negative 248 (72%)

Positive 96 (28%)

EVI1 abnormalities Total (%)

Negative 317 (92%)

Positive 27 (8%)

For more patient details, please see Table S1.

a
NA, not available.
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