Abstract

We consider the parametric estimation of the driving L\'evy process of a multivariate continuous-time autoregressive moving average (MCARMA) process, which is observed on the discrete time grid (0,h,2h,...)(0,h,2h,...). Beginning with a new state space representation, we develop a method to recover the driving L\'evy process exactly from a continuous record of the observed MCARMA process. We use tools from numerical analysis and the theory of infinitely divisible distributions to extend this result to allow for the approximate recovery of unit increments of the driving L\'evy process from discrete-time observations of the MCARMA process. We show that, if the sampling interval h=hNh=h_N is chosen dependent on NN, the length of the observation horizon, such that NhNN h_N converges to zero as NN tends to infinity, then any suitable generalized method of moments estimator based on this reconstructed sample of unit increments has the same asymptotic distribution as the one based on the true increments, and is, in particular, asymptotically normally distributed.Comment: 38 pages, four figures; to appear in Journal of Multivariate Analysi

    Similar works

    Full text

    thumbnail-image

    Available Versions